Nav: Home

The 'Signal Cell' relaying microbiota signals discovered

November 25, 2019

Microorganisms are considered as dirty organism that threaten our health, decay food and cause inconvenience in our daily life. However, they are playing a critical role in making nutrients by metabolizing food, allowing all living creatures to live on. Especially, there are 2,000 kinds of microorganisms and several hundred trillions in figures living in our body. Most of these microorganisms live in digestive tracts but their effect is shown in our entire body. Recently, the research team of POSTECH (Pohang University of Science and Technology, President Moohwan Kim) discovered how microbiota transmit signals to entire body and control hematopoiesis in the bone marrow.

Professor Seung-Woo Lee, Research Professor Yunji Park, Master/PhD integrated program students, Seungwon Lee and Hyekang Kim of Division of Integrative Biosciences and Biotechnology from POSTECH described the mechanism how microbiota signals are sent to different organs. Also, they utilized imaging research to prove that CX3CR+ mononuclear cells contact hematopoietic progenitors for the first time in history. Their research is introduced as a featured content in the journal of the American Society of Hematology, Blood.

Recent researches on microorganism concluded that microbiota control biological phenomenon not only in digestive tracts but also in lung, liver, brain, bone marrow and other organs. But, none of them were able to define a mechanism for relaying microbiota signals to entire body or for producing immune cells by receiving microbiota signals.

Professor Lee and his research team focused on the fact that the microbiota regulate the immune system of our body by controlling hematopoiesis in the bone marrow to produce white blood cells. In this process, the team discovered that the microbiota signal including bacterial DNA is transferred to the bone marrow through bloodstream and CX3CR1+ mononuclear cells in the bone marrow recognize this signal.

They explained that when CX3CR1+ mononuclear cells recognize microbiota signals, they release signal substances called cytokines which control and stimulate body's defense system through the signal transduction. They also explained that cytokines control the number of hematopoietic progenitors or stimulate differentiation into myeloid lineages to make blood cells.

Furthermore, they verified that CX3CR1+ mononuclear cells contact hematopoietic progenitors at the perivascular region and they play as a signal receiving microbiota signals.

They discovered the hematopoiesis control mechanism which is controlled by cytokines produced when CX3CR1+ mononuclear cells recognize microbiota signals transferred to the bone marrow.

Professor Seung-Woo Lee commented, "For the first time, our research describes the mechanism that had not been explained how microbiota regulate not only digestive tracts but also entire body response. It might be possible to apply this study to control immune response in other parts of a body or to treat cancer and inflammatory disease via microbiota signal pathway.

This study was financially supported by National Research Foundation of Korea, Regional Leading Research Center, and Korea Ministry of Science and ICT under BK21 Plus project.
-end-


Pohang University of Science & Technology (POSTECH)

Related Bone Marrow Articles:

3D atlas of the bone marrow -- in single cell resolution
Stem cells located in the bone marrow generate and control the production of blood and immune cells.
Dangerous bone marrow, organ transplant complication explained
Scientists have discovered the molecular mechanism behind how the common cytomegalovirus can wreak havoc on bone marrow and organ transplant patients, according to a paper published in the journal Cell & Host Microbe.
Viagra shows promise for use in bone marrow transplants
Researchers at UC Santa Cruz have demonstrated a new, rapid method to obtain donor stem cells for bone marrow transplants using a combination of Viagra and a second drug called Plerixafor.
Bone marrow may be the missing piece of the fertility puzzle
A woman's bone marrow may determine her ability to start and sustain a pregnancy, report Yale researchers in PLOS Biology.
Cells that make bone marrow also travel to the womb to help pregnancy
Bone marrow-derived cells play a role in changes to the mouse uterus before and during pregnancy, enabling implantation of the embryo and reducing pregnancy loss, according to research published Sept.
Uncovering secrets of bone marrow cells and how they differentiate
Researchers mapped distinct bone marrow niche populations and their differentiation paths for the bone marrow factory that starts from mesenchymal stromal cells and ends with three types of cells -- fat cells, bone-making cells and cartilage-making cells.
Zebrafish help researchers explore alternatives to bone marrow donation
UC San Diego researchers discover new role for epidermal growth factor receptor in blood stem cell development, a crucial key to being able to generate them in the laboratory, and circumvent the need for bone marrow donation.
New material will allow abandoning bone marrow transplantation
Scientists from the National University of Science and Technology 'MISIS' developed nanomaterial, which will be able to restore the internal structure of bones damaged due to osteoporosis and osteomyelitis.
Blood diseases cured with bone marrow transplant
Doubling the low amount of total body radiation delivered to patients undergoing bone marrow transplants with donor cells that are only 'half-matched' increased the rate of engraftment from only about 50 percent to nearly 100 percent, according to a new study by Johns Hopkins researchers.
Vitamin D and immune cells stimulate bone marrow disease
The bone marrow disease myelofibrosis is stimulated by excessive signaling from vitamin D and immune cells known as macrophages, reveals a Japanese research team.
More Bone Marrow News and Bone Marrow Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.