Nav: Home

The heat is on

November 25, 2019

Climate change is reorganizing the life in our oceans in a big way: as waters warm, cold-loving species, from plankton to fish, leave the area and warm water species become more successful. So say an international group of scientists in the most comprehensive assessment of the effects of ocean warming on the distribution fish communities.

"We've known for a while that marine species tend to track ocean temperature, but this is the first time we've seen how entire communities respond, and that the redistribution of species is so predictable by temperature alone," said UC Santa Barbara marine ecologist Ben Halpern, an author on a paper in the journal Nature Climate Change. "The implications are very large for the ecology of the oceans and for the benefits -- like food from fishing -- people get from the oceans."

Halpern, who directs UCSB's National Center for Ecological Analysis and Synthesis and is a professor in the Bren School of Environmental Science & Management, joined researchers from the UK, Japan, Australia, the U.S., Germany, Canada, South Africa and New Zealand to analyze three million records of thousands of species from 200 ecological communities across the globe. Reviewing data from 1985-2014, the team, led by marine ecologist Michael Burrows of the Scottish Association for Marine Science (SAMS) in Oban, showed how subtle changes in the movement of species that prefer cold water or warm water, in response to rising temperatures, made a big impact on the global picture.

"For the period from 1985-2014 we created the equivalent of an electoral poll in the ocean, showing swings between types of fish and plankton normally associated with either cold or warm habitats," Burrows said. "As species increase in number and move into, or decline and leave a particular ecological community, the make-up of that community will change in a predictable way."

The truly global study looked at data from the North Atlantic, Western Europe, Newfoundland and the Labrador Sea, the U.S. east coast, the Gulf of Mexico and the North Pacific from California to Alaska.

While the global warming trend was widely seen, the North Atlantic showed the largest rise in average temperature during the time period. However, for fish communities in the Labrador Sea, where the temperature at 100 meters deep can be as much as five degrees Celsius cooler than the surface, moving deeper in the water column allowed the cold-water species to remain successful.

"Most of the data collected were targeted surveys of commercial fish stocks, so the changes seen reflect those likely to be seen in fish markets as cold-water fish like cod and haddock decline, while warm-water species like red mullet increase with warming," Burrows said, adding that there has been a temperature rise of almost one degree Celsius in some parts of the ocean since 1985.

While one degree Celsius may not seem like a big change, for those fish and other marine organisms already at their maximum temperature tolerance the shift is enough to alter their chances of success in a given area and impact the global ocean food web, according to the researchers.

"Given the complexity of the oceans and ocean life, it is really remarkable that a single factor -- ocean temperature -- is such a powerful predictor of change," Halpern said. "Few things in life can be explained by a single factor."
-end-
Research in this paper was conducted also by Amanda E. Bates at University of Southampton and Memorial University of Newfoundland; Mark J. Costello at University of Auckland; Martin Edwards at Sir Alister Hardy Foundation for Ocean Science and Plymouth University; Graham J. Edgar and Rick D. Stuart-Smith at University of Tasmania; Clive J. Fox and Benjamin L. Payne at SAMS; Jan Hiddink at Bangor University; Malin L. Pinsky and Ryan D. Batt at Rutgers University; Jorge Garcia Molinos at Hokkaido University; David S. Schoeman at University of the Sunshine Coast and Nelson Mandela University; and Elvira S. Poloczanska at Alfred Wegener Institute and University of Queensland.

University of California - Santa Barbara

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.