Nav: Home

Forests face climate change tug of war

November 25, 2019

In a world of rising levels of atmospheric carbon dioxide, plants should be happy, right? Experiments have shown that, yes, increased carbon dioxide does allow plants to photosynthesize more and use less water.

But the other side of the coin is that warmer temperatures drive plants to use more water and photosynthesize less. So, which force, CO2 fertilization or heat stress, wins this climate tug of war?

The answer, University of Utah researchers write in a new study in Proceedings of the National Academy of Sciences, is that it depends on whether forests and trees are able to adapt to their new environment. The study, they say, incorporates aspects of a tree's physiology to explore how trees and forests respond to a changing climate.

"It's taking the physiology of individual cells and scaling it up in a computer to make projections of a continents' worth of forests," says study co-author William Anderegg.

Stemming water loss

To set the stage for this tug of war, it's important to understand how trees and plants use water.

In a tree, water is pulled up from the roots through the xylem, the tree's vascular system. The water moves to the leaves, where photosynthesis happens. On the underside of leaves, small pores called stomata open to admit CO2 for photosynthesis. Water vapor can escape through the stomata, though, so closing stomata is required to guard against water loss during dry or hot times.

During an intense drought, trees have to work harder to pull water into the tree and through the xylem. If the soil is dry enough, the tension on the water causes a bubble of air to form in the xylem, effectively reducing water transport and injuring or killing the tree. It's akin to a heart attack.

A physiological model

John Sperry of the U's School of Biological Sciences spent decades studying the physiology of tree water use, and in recent years has been joined by Anderegg and postdoctoral researcher Martin Venturas, along with other colleagues. Together, they've developed a model of how trees' physiological traits, primarily the regulation of stomatal opening, influences photosynthesis and water loss in response to a changing environment, including drought.

This model, Sperry says, has now enabled a new way of predicting the outcome of  the climate tug of war, quantifying the competing effects of CO2 fertilization and heat stress to find the balance point.

But it's also enabled another advance in understanding: Anderegg says that the model allows them to simulate the ability of trees to acclimate to heat and drought--both at short time scales, by closing or opening stomata, or at long time scales, by extra tree growth or forest dieback. "We're assuming the plants are adapted to be somewhat smart about responding to the climate and the environment," Anderegg says.

Some acclimation was seen in previous experiments where trees were bathed in CO2-enriched air, Venturas adds, and is also seen in forests that are similar to each other but are located in slightly different climates.

"Our present-day models don't do physiology or acclimation," Anderegg says. "They matter absolutely enormously to the future of forests. We came up with ways to incorporate those."

It's all about the ratio

The model results, Sperry says, suggest that the winner of the tug of war doesn't depend on the absolute amount of CO2rise or warming--just the ratio between the two.

"So you can have the same forest moving across big gradients in climate change if that ratio is at the neutral point," Sperry says. "But anything that pushes that ratio to the warming side is going  to have potential for serious negative impact."

If forests aren't able to acclimate, the researchers write, then the ratio must be above 89 parts per million CO2 per degree C of warming to avoid significant stress and tree die-off. Only 55% of climate forecasts show this scenario occurring. But if forests are able to acclimate, then they can tolerate a lower ratio: 67 parts per million CO2 per degree of warming, which occurs in 71% of forecasts.

Other tipping factors

But even with acclimation, other factors can tip the balance toward forest catastrophe. The model doesn't take into account forest fires or insect infestation, Venturas says, only the physiology of the trees--although stressed forests are more susceptible to both fires and insects.

"It's improving one piece of the puzzle, but we still need to learn a lot about the other pieces and how they're integrated," he says.

The researchers also write that exceptionally dry years can also tip the balance. "In those cases, if we drop below a soil moisture  threshold, we could have the whole forest die," Venturas says. The mortality can happen relatively suddenly. "You see this in your flower pot at home if you forget to water," Sperry says. "It'll look fine up to a certain point but then you hit that moisture threshold and in a matter of days the plant can die. If you don't get rain in that period, the system goes into a cycle where the soil's drying out too fast and sends the trees into vascular failure."

Sperry adds that the study predicts a precarious tightrope of climate conditions for future forests to navigate. "The study by no means gives a green light to the status quo."
-end-
Henry N. Todd, Anna T. Trugman, Yujie Wang, and Xiaonan Tai are also co-authors on this paper.

Find this release here.

After publication, find the full study here.

University of Utah

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.