A missing link in haze formation

November 25, 2019

Air-quality alerts often include the levels of particulate matter, small clumps of molecules in the lower atmosphere that can range in size from microscopic to visible. These particles can contribute to haze, clouds, and fog and also can pose a health risk, especially those at the smaller end of the spectrum. Particles known as PM10 and PM2.5, referring to clumps that are 2.5 to 10 micrometers in size, can be inhaled, potentially harming the heart and lungs.

This week, a group led by University of Pennsylvania scientists in collaboration with an international team report a new factor that affects particle formation in the atmosphere. Their analysis, published in the Proceedings of the National Academy of Sciences, found that alcohols such as methanol can reduce particle formation by consuming one of the process's key ingredients, sulfur trioxide (SO3).

"Right now, we're all concerned about PM2.5 and PM10 because these have some real air-quality and health consequences," says Joseph S. Francisco, a corresponding author on the paper and an atmospheric chemist in Penn's School of Arts and Sciences. "The question has been, How do you suppress the formation of these kinds of particles? This work actually gives some very important insight, for the first time, into how you can suppress particle growth."

"We and others have been studying this process of how particles grow so we can better understand the weather and the health implications," says Jie Zhong, a postdoctoral fellow at Penn and co-lead author of the work. "Previously people thought that alcohols were not important because they interact weakly with other molecules. But alcohols attracted our attention because they're abundant in the atmosphere, and we found they do in fact play a significant role in reducing particle formation."

Leading up to this work, Zhong and colleagues had been focused on various reactions involving SO3, which can arise from various types of pollution, such as burning fossil fuels. When combined with water molecules, SO3 forms sulfuric acid, a major component of acid rain but also one of the most important "seeds" for growing particles in the atmosphere.

Chemists knew that alcohols are not very "sticky," forming only weak interactions with SO3, and had thus dismissed it as a key contributor to particle formation. But when Zhong and colleagues took a closer look, using powerful computational chemistry models and molecular dynamics simulations, they realized that SO3 could indeed react with alcohols such as methanol when there is a lot of it in the atmosphere. The resulting product, methyl hydrogen sulfate (MHS), is sticky enough to participate in the particle-formation process.

"Because this reaction converts alcohols to more sticky compounds," says Zhong, "initially we thought it would promote the particle formation process. But it doesn't. That's the most interesting part. Alcohols consume or compete for SO3 so less of it is available to form sulfuric acid."

Even though the reaction between methanol and SO3 requires more energy, the researchers found that MHS itself, in addition to sulfuric acid and water, could catalyze the methanol reaction.

"That was an interesting part for us, to find that the MHS can catalyze its own formation," says Francisco. "And what was also unique about this work and what caught us by surprise was the impact of the effect."

Francisco and Zhong note that in dry and polluted conditions, when alcohols and SO3 are abundant in the atmosphere but water molecules are less available, this reaction may play an especially significant role in driving down the rate of particle formation. Yet they also acknowledge that MHS, the production of the methanol-SO3 reaction, has also been linked to negative health impacts.

"It's a balance," says Zhong. "On the one hand this reaction reduces new particle formation, but on the other hand it produces another product that is not very healthy."

What the new insight into particle formation does offer, however, is information that can power more accurate models for air pollution and even weather and climate, the researchers say. "These models haven't been very accurate, and now we know they were not incorporating this mechanism that wasn't recognized previously," Zhong says.

As a next step, the researchers are investigating how colder conditions, involving snow and ice, affect new particle formation. "That's very appropriate because winter is coming." Francisco says.
-end-
Joseph S. Francisco is a President's Distinguished Professor in the Department of Earth and Environmental Science with a secondary appointment in the Department of Chemistry, both in the University of Pennsylvania School of Arts and Sciences.

Jie Zhong is a postdoctoral fellow in the Department of Earth and Environmental Science and the Department of Chemistry in the University of Pennsylvania School of Arts and Sciences.

Francisco and Zhong's coauthors on the study were the Beijing Institute of Technology's Ling Liu and Xiuhui Zhang; University of Helsinki's Hanna Vehkamäki, Theo Kurtén, and Lin Du; and University of Nebraska-Lincoln's Xiao Cheng Zeng.

The study was supported by the National Natural Science Foundation of China (grants 21976015 and 91644214), China Scholarship Council, Academy of Finland, European Research Council (Grant 692891-DAMOCLES), University of Helsinki, and UNL Holland Computing Center.

University of Pennsylvania

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.