RUDN University research team of mathematicians suggested a new decision making algorithm

November 25, 2020

A research team from RUDN University developed an algorithm to help large groups of people make optimal decisions in a short time. They confirmed the efficiency of their model using the example of the market at which the outbreak of COVID-19 began. The model helped the administration and sellers agree on closing the market and reach a consensus about the sums of compensations in just three steps. An article about the algorithm was published in the Information Sciences journal.

Decision theory is a field of mathematics that studies the patterns of decision making and strategy selection. In the terms of mathematics, decision making is an optimization task with multiple criteria. Expert opinions, judgments, and possible risks are considered variables, and the relations between participants and the search for an optimal solution are expressed as mathematical operations. LSGDM is a model in decision theory that describes decision making situations with over 20 expert-level participants. Their opinions are affected by personal relations: for example, friends support each other's views. This increases the level of uncertainty because convincing the participants and reaching a consensus becomes more difficult. A research team of mathematicians from RUDN University suggested a method to eliminate this uncertainty.

"Thanks to today's technological developments, more and more people start to participate in decision-making processes. That is why LSGDM has become a burning issue for researchers. In LSGDM, participants represent different areas of interest, and therefore it takes longer for them to reach a consensus. The process requires a moderator capable of convincing all parties to adjust their opinions," said Prof. Enrique Herrera-Viedma, research team's leader in RUDN University.

The solution suggested by his team of mathematicians is based on the so-called robust optimization technique. It is applied to optimization tasks that are sensitive to changes in the initial data (in this case, in the personal relations between the participants). The mathematicians suggested a new way of categorizing experts into clusters based on relationship strength and the level of trust between them. The algorithm consisted of several steps. First, the experts were clusterized; then, the team identified a cluster with the opinion that differed the most from the collective judgment; and after that, such opinion was corrected. The iterations were repeated until all participants agreed on one solution. The methods of opinion correction were irrelevant from the mathematical point of view. The only factor that mattered was the unit negotiation cost: the amount of resources (time, money, etc.) that had to be spent to reach the desired result.

The research team applied the model to a real-life example. After the outbreak of COVID-19, a seafood market in Wuhan had to be closed down. The administration was looking for an optimal solution: it had to compensate the losses of the sellers while staying within the market's budget. The mathematicians chose 20 sellers that requested different sums of compensation for closing their stalls: from 200 to 900 yuans. The participants were divided into four clusters based on such factors as similar opinions, the proximity of stalls to each other, and so on. The algorithm suggested by the team let the sellers and the administrators reach a consensus in just three steps. The final sum of compensation was 880 yuans, and the negotiation cost for the market administration turned out to be the lowest compared to other existing models.
-end-


RUDN University

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.