Defects in mitochondria may explain many health problems observed during space travel

November 25, 2020

For space exploration to be successful, it's vital to understand--and find ways to address--underlying causes of the health issues that have been observed in astronauts who have spent extended periods of time off world. These problems include loss of bone and muscle mass, immune dysfunction, and heart and liver problems. Using data collected from a number of different resources, a multidisciplinary team is reporting discovery of a common thread that drives this damage: mitochondrial dysfunction. The researchers used a systems approach to look at widespread alterations affecting biological function. The findings are reported November 25 in the journal Cell.

"We started by asking whether there is some kind of universal mechanism happening in the body in space that could explain what we've observed," says senior author Afshin Beheshti (@AfshinBeheshti), a principal investigator and bioinformatician at KBR in the Space Biosciences Division of the National Aeronautics and Space Administration (NASA) at Ames Research Center in California's Silicon Valley and a visiting researcher at the Broad Institute. "What we found over and over was that something is happening with the mitochondria regulation that throws everything out of whack."

The investigators analyzed data obtained from NASA's GeneLab platform, a comprehensive database that includes data from animal studies, the NASA Twin Study, and samples collected from 59 astronauts over decades of space travel. Many of the scientists who participated in this study are involved with GeneLab's Analysis Working Groups, which draw from institutions all over the world. The platform contains a range of "omics" data related to changes in tissues and cells that occur due to the combined effects of space radiation and microgravity, including proteomic, metabolomic, transcriptomic, and epigenomic data.

The researchers used an unbiased approach to look for correlations that could explain the widespread changes observed. "We compared all these different tissues from mice that were flown in space on two different missions, and we saw that mitochondrial dysfunction kept popping up," Beheshti says. "We looked at problems in the liver and saw they were caused by pathways related to the mitochondria. Then we looked at problems in the eyes and saw the same pathways. This is when we became interested in taking a deeper look."

He explains that mitochondrial suppression, as well as overcompensation that can sometimes occur because of that suppression, can lead to many systemic organ responses. They can also explain many of the common changes seen in the immune system.

Using their discoveries from mice as a starting point, the researchers then looked at whether the same mechanisms could be involved with humans in space. Examining data from the NASA Twins Study, in which identical twins Scott and Mark Kelly were followed over time, the former on the International Space Station and the latter on the ground, they saw many changes in mitochondrial activity. Some of these changes could explain alterations in the distribution of immune cells that occurred in Scott during his year in space. They also used physiological data and blood and urine samples that had been collected from dozens of other astronauts to confirm that mitochondria activity in different cell types had been altered.

"I was completely surprised to see that mitochondria are so important, because they weren't on our radar," Beheshti says. "We were focusing on all the downstream components but hadn't made this connection." He adds that mitochondrial dysfunction can also help explain another common problem with extended space travel: disrupted circadian rhythms. Since the team first reported their findings within NASA, other NASA scientists have begun making connections between mitochondrial changes and common space-related cardiovascular problems as well.

The hope is that now that mitochondrial issues have been identified as a cause of so many health risks related to space travel, countermeasures could be developed to address them. "There are already many approved drugs for various mitochondrial disorders, which would make it easier to move them toward this application," Beheshti notes. "The low-hanging fruit now would be to test some of these drugs with animal and cell models in space."
This work was supported by the GeneLab Project at NASA's Ames Research Center in Silicon Valley, through NASA's Space Biology Program in the Biological and Physical Sciences Division of the Science Mission Directorate; the National Aeronautics and Space Administration; the National Institutes of Health; the South Carolina Established Program to Stimulate Competitive Research; the American Heart Association; and the Human Health Countermeasures Element of the NASA Human Research Program.

Cell, da Silveira et al.: "Multi-Omics Analysis Reveals Mitochondrial Stress as a Central Hub for Spaceflight Biological Impact"

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit: To receive Cell Press media alerts, contact

Cell Press

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to