Understanding the power of our Sun

November 25, 2020

Stars produce their energy through nuclear fusion by converting hydrogen into helium - a process known to researchers as "hydrogen burning". There are two ways of carrying out this fusion reaction: on the one hand, the so-called pp cycle (proton-proton reaction) and the Bethe Weizsäcker cycle (also known as the CNO cycle, derived from the elements carbon (C), nitrogen (N) and oxygen (O)) on the other hand.

The pp cycle is the predominant energy source in our Sun, only about 1.6 per mil of its energy comes from the CNO cycle. However, the Standard Solar Model (SSM) predicts that the CNO cycle is probably the predominant reaction in much larger stars. As early as the 1930s, the cycle was theoretically predicted by the physicists Hans Bethe and Carl Friedrich von Weizsäcker and subsequently named after these two gentlemen. While the pp cycle could already be experimentally proven in 1992 at the GALLEX experiment, also in the Gran Sasso massif, the experimental proof of the CNO cycle has so far not been successful.

Both the pp cycle and the CNO cycle produce countless neutrinos - very light and electrically neutral elementary particles. The fact that neutrinos hardly interact with other matter allows them to leave the interior of the sun at almost the speed of light and to transport the information about their origin to earth unhindered. Here the ghost particles have no more than to be captured. This is a rather complex undertaking, which is only possible in a few large-scale experiments worldwide, since neutrinos show up as small flashes of light in a huge tank full of a mixture of water, mineral oil and other substances, also called scintillator. The evaluation of the measured data is complex and resembles looking for a needle in a haystack.

Compared to all previous and ongoing solar neutrino experiments, Borexino is the first and only experiment worldwide that is able to measure these different components individually, in real time and with a high statistical power. This week, the Borexino research collaboration was able to announce a great success: In the renowned scientific journal Nature, they present their results on the first experimental detection of CNO neutrinos - a milestone in neutrino research.

Dresden physicist Professor Kai Zuber is a passionate neutrino hunter.

He is involved in many different experiments worldwide, such as the SNO collaboration in Canada, which was awarded the Nobel Prize for its discovery of a neutrino mass. The fact that with Borexino, he and his colleagues Dr Mikko Meyer and Jan Thurn have now succeeded in experimentally proving the CNO neutrinos for the first time is another major milestone in Zuber's scientific career: "Actually, I have now achieved everything I had imagined and hoped for. I (almost) no longer believe in great new discoveries in solar neutrino research for the rest of my lifetime. However, I would like to continue working on the optimization of the experiments, in which the Felsenkeller accelerator here in Dresden plays an extremely important role. For sure, we will be able to have even more precise measurements of the Sun in the future."
Original publication:

M. Agostini, K. Altenmüller [...] K. Zuber, G. Zuzel: Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun. Nature.

Technische Universität Dresden

Related Neutrinos Articles from Brightsurf:

Big answers from tiny particles
A team of physicists led by Kanazawa University demonstrate a theoretical mechanism that would explain the tiny value for the mass of neutrinos and point out that key operators of the mechanism can be probed by current and future experiments.

Physicists cast doubt on neutrino theory
University of Cincinnati physicists, as part of an international research team, are raising doubts about the existence of an exotic subatomic particle that failed to show up in twin experiments.

Exotic neutrinos will be difficult to ferret out
An international team tracking the 'new physics' neutrinos has checked the data of all the relevant experiments associated with neutrino detections against Standard Model extensions proposed by theorists.

Excess neutrinos and missing gamma rays?
A new model points to the coronoe of supermassive black holes at the cores of active galaxies to help explain the excess neutrinos observed by the IceCube Neutrino Observatory.

Where neutrinos come from
Russian astrophysicists have come close to solving the mystery of where high-energy neutrinos come from in space.

Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.

Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.

Why didn't the universe annihilate itself? Neutrinos may hold the answer
New results from an experiment called T2K suggest that physicists are closer than ever before to answering a major mystery: Why didn't the universe annihilate itself in a humungous burst of energy not long after the Big Bang?

T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.

Radar and ice could help detect an elusive subatomic particle
A new study published today in the journal Physical Review Letters shows, for the first time, an experiment that could detect a class of ultra-high-energy neutrinos using radar echoes.

Read More: Neutrinos News and Neutrinos Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.