Almost like on Venus

November 25, 2020

Four-and-a-half billion years ago, Earth would have been hard to recognise. Instead of the forests, mountains and oceans that we know today, the surface of our planet was covered entirely by magma - the molten rocky material that emerges when volcanoes erupt. This much the scientific community agrees on. What is less clear is what the atmosphere at the time was like. New international research efforts led by Paolo Sossi, senior research fellow at ETH Zurich and the NCCR PlanetS, attempt to lift some of the mysteries of Earth's primeval atmosphere. The findings were published today in the journal Science Advances.

Making magma in the laboratory

"Four-and-a-half billion years ago, the magma constantly exchanged gases with the overlying atmosphere," Sossi begins to explain. "The air and the magma influenced each other. So, you can learn about one from the other."

To learn about Earth's primeval atmosphere, which was very different from what it is today, the researchers therefore created their own magma in the laboratory. They did so by mixing a powder that matched the composition of Earth's molten mantle and heating it. What sounds straightforward required the latest technological advances, as Sossi points out: "The composition of our mantle-like powder made it difficult to melt - we needed very high temperatures of around 2,000° Celsius."

That required a special furnace, which was heated by a laser and within which the researchers could levitate the magma by letting streams of gas mixtures flow around it. These gas mixtures were plausible candidates for the primeval atmosphere that, as 4.5 billion years ago, influenced the magma. Thus, with each mixture of gases that flowed around the sample, the magma turned out a little different.

"The key difference we looked for was how oxidised the iron within the magma became," Sossi explains. In less accurate words: how rusty. When iron meets oxygen, it oxidises and turns into what we commonly refer to as rust. Thus, when the gas mixture that the scientists blew over their magma contained a lot of oxygen, the iron within the magma became more oxidised.

This level of iron oxidation in the cooled-down magma gave Sossi and his colleagues something that they could compare to naturally occurring rocks that make up Earth's mantle today - so-called peridotites. The iron oxidation in these rocks still has the influence of the primeval atmosphere imprinted within it. Comparing the natural peridotites and the ones from the lab therefore gave the scientists clues about which of their gas mixtures came closest to Earth's primeval atmosphere.

A new view of the emergence of life

"What we found was that, after cooling down from the magma state, the young Earth had an atmosphere that was slightly oxidising, with carbon dioxide as its main constituent, as well as nitrogen and some water," Sossi reports. The surface pressure was also much higher, almost one hundred times that of today and the atmosphere was much higher, due to the hot surface. These characteristics made it more similar to the atmosphere of today's Venus than to that of today's Earth.

This result has two main conclusions, according to Sossi and his colleagues: The first is that Earth and Venus started out with quite similar atmospheres but the latter subsequently lost its water due to the closer proximity to the sun and the associated higher temperatures. Earth, however, kept its water, primarily in the form of oceans. These absorbed much of the CO2 from the air, thereby reducing the CO2 levels significantly.

The second conclusion is that a popular theory on the emergence of life on Earth now seems much less likely. This so-called "Miller-Urey experiment", in which lightning strikes interact with certain gases (notably ammonia and methane) to create amino acids - the building blocks of life - would have been difficult to realise. The necessary gases were simply not sufficiently abundant.
-end-


ETH Zurich

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.