Geologists discover new class of spreading ridge on sea bottom

November 26, 2003

Scientists have discovered a new "ultra-slow" class of ocean ridge involved in seafloor spreading. Investigations in the remote regions of the planet--in the far south Atlantic and Indian Oceans and the sea floor beneath the Arctic icecap--found that for large regions there, the sea floor splits apart by pulling up solid rock from deep within the earth. These rocks, known as peridotites (after the gemstone peridot) come from the deep layer of the earth known as the mantle.

Known ocean ridges, like the Mid-Atlantic Ridge and the East Pacific Rise, include regularly spaced volcanoes that continuously create a layer of crust on the seafloor. Mantle rocks are only rarely found along these volcanic ridges. Along the new class of ocean ridges, however, volcanoes occur only at widely spaced intervals and contain more sodium and potassium, among other chemical elements, than do typical mid-ocean ridge lavas.

According to marine geologist Henry Dick of the Woods Hole Oceanographic Institution (WHOI), this newly recognized class of ultraslow-spreading ridges constitutes a surprising 12,000 miles of the 30,000-mile global ocean ridge system. Dick, along with WHOI marine geophysicists scientists Jian Lin and Hans Schouten, have published their results in this week's (November 27) issue of the journal Nature.

"These results are a wonderful example of the unexpected discoveries that often occur in science," said David Epp, director of the marine geology and geophysics program at the National Science Foundation, the federal agency that funded the research.

"This work will increase our understanding of mid-ocean ridge processes; marine geology textbooks will be rewritten," Epp said.

Seafloor spreading occurs at ocean ridges where new ocean crust forms along the margins of the earth's great tectonic plates as geologic forces pull the plates apart. Elsewhere, the crust is destroyed as it is driven back down into the deep earth at island arcs and continental margins. Heat and mass are exchanged among Earth's interior, oceans and atmosphere primarily through those processes.

"This discovery means the total mass flux from the interior of the earth at ocean ridges is significantly less than scientists assumed, and the total volume of basaltic ocean crust is significantly smaller," said Dick.

Previously, earth scientists recognized only two major classes of ocean ridges: fast and slow. The first are half-mile-high ridges where hot magma from the Earth's interior erupts to form new seafloor. Slow spreading ridges are marked by canyons more than a mile deep where the Earth is rifted apart with regularly spaced volcanoes.

The "ultra-slow" class of ocean ridges creak apart at less than one inch per year. They also have a deep rift valley, but the ridge volcanoes are widely spaced between long stretches where cold mantle rock is pulled directly to the seafloor.

Fast- and slow-spreading ridges are formed by the linking of volcanic rifts and transform faults where tectonic plates slide past each other. On land, examples of such faults, such as California's San Andreas Fault are major geologic hazards where earthquakes often occur. Such "transform" faults are usually abundant on ocean ridges but generally give rise to weaker earthquakes because of thinner oceanic plates.

WHOI scientists found that transform faults don't form at all in ultra-slow spreading ridges. Instead, the earth cracks apart between the volcanoes, heaving solid rock up onto the seafloor in any direction needed to fit the plate boundary. These "amagmatic accretionary ridges" then link with the volcanic segments to form the ridge.

Basically, Dick said, you could describe fast, slow and ultra-slow spreading ridges in terms of the mantle temperature beneath them: hot, cool and cold ridges, respectively.

The intrusion of large peridotite massifs to seafloor is likely accompanied by their hydration to the rock serpentinite, which is sampled a lot along ultra-slow ridges. "Earthquakes are far fewer and smaller here than one would expect for an ocean ridge with such rough terrain", said Lin. "One possibility is that serpentinite is weak and may have prevented the larger quakes. The deficit of large quakes on ultraslow ridges, then, may have important implications for understanding why portions of the San Andreas fault in California are creeping smoothly, while other segments have violently ruptured with large earthquakes."

The discovery of this new class of ocean ridge may answer a major puzzle in plate tectonics: what the plate boundary looks like in the early stages of continental breakup and continental drift. According to Dick, it has been difficult to fit models for slow and fast spreading ridges with the seismic images of North American and European continental margins where the common land mass broke apart millions of years ago. Scientists are already noting similarities between the structure of ultra-slow spreading ridges and the deep structure of those continental margins.
-end-
NSF PR 03-128

NSF Program Contact: Dave Epp, 703-292-8581, depp@nsf.gov

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Receive official National Science Foundation news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Useful National Science Foundation Web Sites
NSF Home Page: http://www.nsf.gov/
News Highlights: http://www.nsf.gov/od/lpa
Newsroom: http://www.nsf.gov/od/lpa/news/media/start.htm
Science Statistics: http://www.nsf.gov/sbe/srs/stats.htm
Awards Searches: http://www.fastlane.nsf.gov/a6/A6Start.htm

Image available at: http://www.nsf.gov/od/lpa/news/03/pr03128_images.htm

National Science Foundation

Related San Andreas Fault Articles from Brightsurf:

New fault zone measurements could help us to understand subduction earthquake
University of Tsukuba researchers have conducted detailed structural analyses of a fault zone in central Japan to identify the specific conditions that lead to devastating earthquake.

Ancient lake contributed to past San Andreas fault ruptures
he San Andreas fault, which runs along the western coast of North America and crosses dense population centers like Los Angeles, California, is one of the most-studied faults in North America because of its significant hazard risk.

Deep underground forces explain quakes on San Andreas Fault
Rock-melting forces occurring much deeper in the Earth than previously understood drive tremors along a segment of the San Andreas Fault near Parkfield, Calif., new USC research shows.

Signs of 1906 earthquake revealed in mapping of offshore northern San Andreas Fault
A new high-resolution map of a poorly known section of the northern San Andreas Fault reveals signs of the 1906 San Francisco earthquake, and may hold some clues as to how the fault could rupture in the future, according to a new study published in the Bulletin of the Seismological Society of America.

Geoscientists find unexpected 'deep creep' near San Andreas, San Jacinto faults
A new analysis of thousands of very small earthquakes in the San Bernardino basin suggests that the unusual deformation of some may be due to 'deep creep' 10 km below the Earth's surface, say geoscientists at UMass Amherst.

USU geologists detail likely site of San Andreas Fault's next major quake
Utah State University geologist Susanne Jänecke and colleagues identify the San Andreas Fault's 'Durmid Ladder' structure, a a nearly 15.5-mile-long, sheared zone with two, nearly parallel master faults and hundreds of smaller, rung-like cross faults that could be the site of the region's next major earthquake.

Site of the next major earthquake on the San Andreas Fault?
Many researchers hypothesize that the southern tip of the 1300-km-long San Andreas fault zone (SAFZ) could be the nucleation site of the next major earthquake on the fault, yet geoscientists cannot evaluate this hazard until the location and geometry of the fault zone is documented.

'Slow earthquakes' on San Andreas Fault increase risk of large quakes, say ASU scientists
A detailed study of the California fault has discovered a new kind of movement that isn't accounted for in earthquake forecasting.

Parkfield segment of San Andreas fault may host occasional large earthquakes
Although magnitude 6 earthquakes occur about every 25 years along the Parkfield Segment of the San Andreas Fault, geophysical data suggest that the seismic slip induced by those magnitude 6 earthquakes alone does not match the long-term slip rates on this part of the San Andreas fault, researchers report November 28 in the Bulletin of the Seismological Society of America (BSSA).

Fault system off San Diego, Orange, Los Angeles counties could produce magnitude 7.3 quake
The Newport-Inglewood and Rose Canyon faults had been considered separate systems but a new study shows that they are actually one continuous fault system running from San Diego Bay to Seal Beach in Orange County, then on land through the Los Angeles basin.

Read More: San Andreas Fault News and San Andreas Fault Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.