A new species of amyloid peptide

November 26, 2004

Bethesda, MD - Scientists have identified a new, longer species of amyloid β-peptide that has the potential to be a new target for the treatment of Alzheimer's disease.

The research appears as the "Paper of the Week" in the December 3 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

One of the characteristic features of Alzheimer's disease is the deposition of amyloid β-peptides in the brain. These amyloid β-peptides are derived from a large amyloid precursor protein through a series of cleavage events. Under normal conditions, cleavage first by α-secretase and then by γ-secretase results in a soluble ectodomain, a short peptide called p3, and an intracellular C-terminal domain, none of which are amyloidogenic. Alternatively, amyloid precursor protein can be processed by the enzymes β-secretase and γ-secretase to produce a soluble ectodomain along with the full-length amyloidogenic amyloid β-peptide and the intracellular C-terminal domain.

Although amyloid precursor protein is found in many cells, its normal biological function is not well understood. "It has been suggested that amyloid precursor protein may function as a receptor or growth factor precursor," notes Dr. Xuemin Xu of The University of Tennessee. "Recent studies also suggest that the intracellular C-terminal domain of the amyloid precursor protein may function as a transcription factor."

While the exact pathogenic role of amyloid β-peptide in Alzheimer's disease has not yet been definitely established, accumulating evidence supports the hypothesis that amyloid β-peptide production and deposition in the brain could be a causative event in Alzheimer's disease. Dr. Xu explains that the literature indicates amyloid β-peptide itself could be toxic to synapses and the accumulation of amyloid β-peptide could initiate a series of events contributing to cell death, including activation of cell death programs, oxidation of lipids and disruption of cell membranes, an inflammatory response, and possibly neurofibrillary tangle formation, which is a close correlate of neuron loss. Therefore, the problem of production, accumulation, and clearance of amyloid β-peptide in the brain emerges as one of the possible rational approaches for the treatment of Alzheimer's disease.

Generally, amyloid β-peptides are around 39-43 amino acid long. Studies have shown that the longer amyloid β-peptides are more amyloidogenic and more pathogenic than the shorter ones. Now, Dr. Xu and his colleagues have discovered a new species of amyloid β-peptide that is 46 amino acids long, called Aβ46. This Aβ46 peptide is produced by γ-secretase at a novel cleavage site, the ζ-site. This site also happens to be the site of a mutation found in early-onset familial Alzheimer's disease called the APP717 or London mutation.

"Another well characterized Alzheimer's disease-linked amyloid precursor protein mutation, the Swedish mutation, also occurs at a major cleavage site, the β-cleavage site at the N-terminus of amyloid β-peptide," adds Dr. Xu. "Studies have shown that Swedish mutation at the β-cleavage site makes the amyloid precursor protein more susceptible to β-secretase activity. The finding that ζ-cleavage site is the APP717 mutation site suggests that the APP717 mutation may cause enhanced production of the longer amyloid β-peptide, Aβ42, by influencing the ζ-cleavage. Therefore, this finding may open a new avenue for studying the mechanism by which APP717 mutations cause enhanced production of the longer amyloid β-peptide."

Dr. Xu and his colleagues also discovered that γ-secretase cleavage at the new ζ-site is specifically inhibited by compounds known as transition state analogs, but is less affected by compounds known as non-transition state inhibitors. Specifically, some of these inhibitors, which were previously known to inhibit the formation of secreted amyloid β-peptides, were found to cause an intracellular accumulation of an even longer amyloid β-peptide species, Aβ46. "These novel findings provide information important for the strategy of prevention and treatment of Alzheimer's disease, aimed at the design of γ-secretase inhibitors," concludes Dr. Xu. "Since amyloid β-peptide is produced by the sequential actions of β- and γ-secretases, inhibition of these secretases to reduce the production of amyloid β-peptide is believed to be one of the more promising avenues of treatment of the disease. To date, more than one dozen γ-secretase inhibitors have been developed or identified."
The Journal of Biological Chemistry's Papers of the Week is an online feature which highlights the top one percent of papers received by the journal. Brief summaries of the papers and explanations of why they were selected for this honor can be accessed directly from the home page of the Journal of Biological Chemistry online at www.jbc.org.

The American Society for Biochemistry and Molecular Biology (ASBMB) is a nonprofit scientific and educational organization with over 11,000 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions, and industry.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's primary purpose is to advance the sciences of biochemistry and molecular biology through its publications, the Journal of Biological Chemistry, The Journal of Lipid Research, Molecular and Cellular Proteomics, and Biochemistry and Molecular Biology Education, and the holding of scientific meetings.

For more information about ASBMB, see the Society's website at www.asbmb.org.

American Society for Biochemistry and Molecular Biology

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.