Exercise rate related to improvements in Parkinson's disease

November 26, 2012

CHICAGO - People with Parkinson's disease benefit from exercise programs on stationary bicycles, with the greatest effect for those who pedal faster, according to a study presented today at the annual meeting of the Radiological Society of North America (RSNA). Functional connectivity magnetic resonance imaging (fcMRI) data showed that faster pedaling led to greater connectivity in brain areas associated with motor ability.

Parkinson's disease is a chronic, progressive disorder of the central nervous system. Early-stage symptoms like shaking and difficulty with walking eventually may progress to cognitive and behavioral problems such as dementia. An estimated 7 to 10 million people worldwide live with Parkinson's disease, according to the Parkinson's Disease Foundation, with most cases occurring after the age of 50.

As the disease progresses and the frequency of side effects increases, the therapeutic window begins to close. Deep brain stimulation is an effective therapy for late-stage Parkinson's disease, but is an invasive and costly procedure.

Exercise is thought to have beneficial effects on Parkinson's disease. Jay L. Alberts, Ph.D., neuroscientist at the Cleveland Clinic Lerner Research Institute in Cleveland, saw this firsthand in 2003 when he rode a tandem bicycle across Iowa with a Parkinson's disease patient to raise awareness of the disease. The patient experienced improvements in her symptoms after the ride.

"The finding was serendipitous," Dr. Alberts recalled. "I was pedaling faster than her, which forced her to pedal faster. She had improvements in her upper extremity function, so we started to look at the possible mechanism behind this improved function."

As part of this inquiry, Dr. Alberts, researcher Chintan Shah, B.S., and their Cleveland Clinic colleagues, recently used fcMRI to study the effect of exercise on 26 Parkinson's disease patients.

"By measuring changes in blood oxygenation levels in the brain, fcMRI allows us to look at the functional connectivity between different brain regions," Shah said.

The patients underwent bicycle exercise sessions three times a week for eight weeks. Some patients exercised at a voluntary level and others underwent forced-rate exercise, pedaling at a speed above their voluntary rate. The researchers used a modified exercise bike to induce forced-rate activity.

"We developed an algorithm to control a motor on the bike and used a controller to sense the patient's rate of exertion and adjust the motor based on their input," Dr. Alberts said.

fcMRI was conducted before and after the eight weeks of exercise therapy and again as follow-up four weeks later. The research team calculated brain activation and connectivity levels from the fcMRI results and correlated the data with average pedaling rate. Results showed increases in task-related connectivity between the primary motor cortex and the posterior region of the brain's thalamus. Faster pedaling rate was the key factor related to these improvements, which were still evident at follow-up.

"The results show that forced-rate bicycle exercise is an effective, low-cost therapy for Parkinson's disease," Shah said.

Dr. Alberts noted that that while faster pedaling led to more significant results, not all Parkinson's patients need to do forced-rate exercise to see improvement.

"We're now looking at this phenomenon in patients with exercise bikes in their home," he said, "and other exercises like swimming and rowing on tandem machines may provide similar benefits."
-end-
Coauthors are Micheal D. Phillips, M.D. (principal investigator), Erik B. Beall, Ph.D., Anneke M.M. Frankemolle, B.S., Amanda Penko, M.A., and Mark J. Lowe, Ph.D.

Note: Copies of RSNA 2012 news releases and electronic images will be available online at RSNA.org/press12 beginning Monday, Nov. 26.

RSNA is an association of more than 50,000 radiologists, radiation oncologists, medical physicists and related scientists, promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill.

Editor's note: The data in these releases may differ from those in the published abstract and those actually presented at the meeting, as researchers continue to update their data right up until the meeting. To ensure you are using the most up-to-date information, please call the RSNA Newsroom at 1-312-949-3233.

For patient-friendly information on functional MRI, visit RadiologyInfo.org.

Radiological Society of North America

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.