Inexpensive 'nano-camera' can operate at the speed of light

November 26, 2013

CAMBRIDGE, Mass -- A $500 "nano-camera" that can operate at the speed of light has been developed by researchers in the MIT Media Lab.

The three-dimensional camera, which was presented last week at Siggraph Asia in Hong Kong, could be used in medical imaging and collision-avoidance detectors for cars, and to improve the accuracy of motion tracking and gesture-recognition devices used in interactive gaming.

The camera is based on "Time of Flight" technology like that used in Microsoft's recently launched second-generation Kinect device, in which the location of objects is calculated by how long it takes a light signal to reflect off a surface and return to the sensor. However, unlike existing devices based on this technology, the new camera is not fooled by rain, fog, or even translucent objects, says co-author Achuta Kadambi, a graduate student at MIT.

"Using the current state of the art, such as the new Kinect, you cannot capture translucent objects in 3-D," Kadambi says. "That is because the light that bounces off the transparent object and the background smear into one pixel on the camera. Using our technique you can generate 3-D models of translucent or near-transparent objects."

In a conventional Time of Flight camera, a light signal is fired at a scene, where it bounces off an object and returns to strike the pixel. Since the speed of light is known, it is then simple for the camera to calculate the distance the signal has travelled and therefore the depth of the object it has been reflected from.

Unfortunately though, changing environmental conditions, semitransparent surfaces, edges, or motion all create multiple reflections that mix with the original signal and return to the camera, making it difficult to determine which is the correct measurement.

Instead, the new device uses an encoding technique commonly used in the telecommunications industry to calculate the distance a signal has travelled, says Ramesh Raskar, an associate professor of media arts and sciences and leader of the Camera Culture group within the Media Lab, who developed the method alongside Kadambi, Refael Whyte, Ayush Bhandari, and Christopher Barsi at MIT and Adrian Dorrington and Lee Streeter from the University of Waikato in New Zealand.

"We use a new method that allows us to encode information in time," Raskar says. "So when the data comes back, we can do calculations that are very common in the telecommunications world, to estimate different distances from the single signal."

The idea is similar to existing techniques that clear blurring in photographs, says Bhandari, a graduate student in the Media Lab. "People with shaky hands tend to take blurry photographs with their cellphones because several shifted versions of the scene smear together," Bhandari says. "By placing some assumptions on the model -- for example that much of this blurring was caused by a jittery hand -- the image can be unsmeared to produce a sharper picture."

The new model, which the team has dubbed nanophotography, unsmears the individual optical paths.

In 2011 Raskar's group unveiled a trillion-frame-per-second camera capable of capturing a single pulse of light as it travelled through a scene. The camera does this by probing the scene with a femtosecond impulse of light, then uses fast but expensive laboratory-grade optical equipment to take an image each time. However, this "femto-camera" costs around $500,000 to build.

In contrast, the new "nano-camera" probes the scene with a continuous-wave signal that oscillates at nanosecond periods. This allows the team to use inexpensive hardware -- off-the-shelf light-emitting diodes (LEDs) can strobe at nanosecond periods, for example -- meaning the camera can reach a time resolution within one order of magnitude of femtophotography while costing just $500.

"By solving the multipath problem, essentially just by changing the code, we are able to unmix the light paths and therefore visualize light moving across the scene," Kadambi says. "So we are able to get similar results to the $500,000 camera, albeit of slightly lower quality, for just $500."
-end-


Massachusetts Institute of Technology

Related Medical Imaging Articles from Brightsurf:

Improved medical imaging improves cancer staging
Prof. TIAN Chao's group improved the imaging quality and 3D construction of the photoacoustic imaging, and applied them to in vivo sentinel lymph node imaging.

AI techniques in medical imaging may lead to incorrect diagnoses
Machine learning and AI are highly unstable in medical image reconstruction, and may lead to false positives and false negatives, a new study suggests.

Tiny devices promise new horizon for security screening and medical imaging
Miniature devices that could be developed into safe, high-resolution imaging technology, with uses such as helping doctors identify potentially deadly cancers and treat them early, have been created in research involving the University of Strathclyde.

Advanced medical imaging combined with genomic analysis could help treat cancer patients
Melding the genetic and cellular analysis of tumors with how they appear in medical images could give physicians new insights into how to best treat patients, especially those with brain cancer, according to a new study led by TGen.

Low doses of radiation used in medical imaging lead to mutations in cell cultures
Common medical imaging procedures use low doses of radiation that are believed to be safe.

Use of medical imaging
This observational study looked at patterns of use for computed tomography (CT), magnetic resonance imaging (MRI), ultrasound and nuclear medicine imaging in the United States and in Ontario, Canada, from 2000 to 2016.

Medical imaging rates continue to rise despite push to reduce their use
The rates of use of CT, MRI and other scans have continued to increase in both the US and Ontario, Canada, according to a new study of more than 135 million imaging exams conducted by researchers at UC Davis, UC San Francisco and Kaiser Permanente.

Two-in-one contrast agent for medical imaging
Magnetic resonance imaging (MRI) visualizes internal body structures, often with the help of contrast agents to enhance sensitivity.

Medical imaging rates during pregnancy
Researchers looked at rates of medical imaging (CT, MRI, conventional x-rays, angiography, fluoroscopy and nuclear medicine) during pregnancy in this observational study that included nearly 3.5 million pregnant women in the United States and Canada from 1996 to 2016.

Scientists discover new method for developing tracers used for medical imaging
University of North Carolina researchers discovered a method for creating radioactive tracers to better track pharmaceuticals in the body as well as image diseases, such as cancer, and other medical conditions.

Read More: Medical Imaging News and Medical Imaging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.