Quantum Metrology Institute to support UK network of Quantum Technology Hubs

November 26, 2014

A new national network of Quantum Technology Hubs, that will explore the properties of quantum mechanics and how they can be harnessed for use in technology, has been unveiled today by Greg Clark, Minister of State for Universities, Science and Cities.

As part of the UK National Quantum Technologies Programme (UKNQT), the National Physical Laboratory (NPL) will also establish a Quantum Metrology Institute (QMI) at its Teddington site. This new Institute will cover all of NPL's leading-edge quantum science and metrology research and provide the expertise and facilities needed for academia and industry to test, validate, and ultimately commercialise new quantum research and technologies. By bringing together industry engineers, academic researchers, and NPL scientists in a highly collaborative environment, the QMI will play a key role in the creation of a UK industry based on quantum technologies.

The QMI will be linked to the four new hubs at the universities of Birmingham, Glasgow, Oxford and York, selected after a competitive peer reviewed process. The hubs will be funded by the Engineering and Physical Sciences Research Council (EPSRC) from the £270 million investment in the UKNQT announced by the Chancellor, George Osborne in his Autumn Statement of 2013. This investment, which is also providing £4 million towards the QMI, is designed to ensure the successful transition of quantum technologies from laboratory to industry. The programme is delivered by EPSRC, Innovate UK, BIS, NPL, GCHQ, DSTL and the KTN.

Quantum metrology at NPL will play a key role in bridging the gap between quantum science and commercial exploitation, for example in developing compact atomic clocks to deliver precision timekeeping in communications.

NPL is one of the world's leading measurement laboratories and is continually developing new capabilities through fundamental and applied research programmes. NPL has a long history in quantum science going back to the successful operation of the world's first atomic clock fifty years ago. More recently NPL demonstrated the highest-accuracy quantum standards for resistance and current. Work at NPL now covers the latest generation of optical atomic clocks and highly stable laser systems, quantum electrical metrology, a range of quantum-based sensors, quantum communications, and quantum materials including graphene. Quantum metrology research is also underway to establish a new SI system of units based on the fundamental physical constants.

The QMI will build upon NPL's proven ability to provide measurement support that underpins quantum research and accelerate the process of commercialisation. For example, NPL recently worked with Toshiba Research Europe and BT on the first successful trial of Quantum Key Distribution (QKD) technology over a live 'lit' fibre network. This work paved the way for more advanced research into QKD, the next frontier of data encryption technology. Prior to the trial NPL developed a series of measurements sensitive enough to detect individual particles of light (photons), which it used to independently verify the security of the system.

The QMI will be a centre for collaboration and will welcome an increasing number of postgraduate researchers and other university staff onto the Teddington site. Students will work on research projects alongside NPL science teams, training a new generation of quantum scientists and engineers. University researchers will also work on site bringing scientific experiments to NPL to use the unique facilities and precise standards available to accurately characterise and validate their developments.

Work has already begun on refurbishing and extending laboratories within NPL for future use in quantum technologies, with the aim being to formally open the QMI in late 2015. The new facility will include a range of new capital investments funded from a £4M capital budget for quantum technologies at NPL, announced as part of the overall government investment in the field. As the scope of engagement continues to expand, the institute hopes to grow through additional investment from government, academia and industry.

Professor Sir Peter Knight, Chair of the QMI at NPL and past president of the IoP, said:

"In the UK we have had incredible academic strength in quantum research, both at the universities and places like the National Physical Laboratory (NPL). The new initiative driven by government's £270M investment is to pull all this out of the laboratories and into practical realisations in the real world. NPL is pivotal to this - its new Quantum Metrology Institute will provide a critical test bed that accelerates the process of commercialising research. Through the QMI we can provide the measurement validation that helps prepare products for market and gives businesses and consumers complete confidence."

Neil Stansfield, Head of Knowledge, Innovation, and Futures Enterprise at Dstl, said:

"In the twentieth century, exploitation of quantum mechanics brought about semiconductors, microprocessors, lasers, nuclear energy, thermal imagers and digital cameras, all of which provide countless benefits for society as well as for the military. In order to replicate such successes with new quantum technologies, there is a need to commercialise the fruits of the UK's world class academic community. NPL's new Quantum Metrology Institute will play a valuable role in this process by establishing standards and providing verification and validation - essential to the uptake of new technologies."

David Delpy, Chairman of the Strategic Advisory Board for UK National Quantum Technology Programme, said:

"NPL will have a critical role to play across the lifetime of this programme, both within the field of metrology and beyond. Many of the new techniques will require very specialist measurement tools, and NPL's new Quantum Metrology Institute will provide crucial resources to help support the whole network. This work is already happening through its role in quantum atomic time and its support to the Dstl."

The £4 million funding from UKNQT adds to the £25 million investment announced by government in January 2013 to help to establish an Advanced Quantum Metrology Laboratory.

The National Physical Laboratory (NPL) is one of the UK's leading science facilities and research centres. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

NPL occupies a unique position as the UK's National Measurement Institute and sits at the intersection between scientific discovery and real world application. Its expertise and original research have underpinned quality of life, innovation and competitiveness for UK citizens and business for more than a century:

National Physical Laboratory

Related Quantum Mechanics Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations
A joint research group led by Prof. Jens Eisert of Freie Universität Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

A new interpretation of quantum mechanics suggests reality does not depend on the measurer
For 100 years scientists have disagreed on how to interpret quantum mechanics.

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

Fluid mechanics mystery solved
An environmental engineering professor has solved a decades-old mystery regarding the behavior of fluids, a field of study with widespread medical, industrial and environmental applications.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.

A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.

Read More: Quantum Mechanics News and Quantum Mechanics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.