Graphene microphone outperforms traditional nickel and offers ultrasonic reach

November 26, 2015

Scientists have developed a graphene based microphone nearly 32 times more sensitive than microphones of standard nickel-based construction.

The researchers, based at the University of Belgrade, Serbia, created a vibrating membrane - the part of a condenser microphone which converts the sound to a current - from graphene, and were able to show up to 15 dB higher sensitivity compared to a commercial microphone, at frequencies up to 11 kHz.

The results are published today, 27th November 2015, in the journal 2D Materials.

"We wanted to show that graphene, although a relatively new material, has potential for real world applications" explains Marko Spasenovic, an author of the paper. "Given its light weight, high mechanical strength and flexibility, graphene just begs to be used as an acoustic membrane material."

The graphene membrane, approximately 60 layers thick, was grown on a nickel foil using chemical vapour deposition, to ensure consistent quality across all the samples.

During membrane production, the nickel foil was etched away and the graphene membrane placed in the same housing as a commercial microphone for comparison. This showed a 15 dB higher sensitivity than the commercial microphone.

The researchers also simulated a 300-layer thick graphene membrane, which shows potential for performance far into the ultrasonic part of the spectrum.

"The microphone performed as well as we hoped it would" adds Spasenovic. "A thicker graphene membrane theoretically could be stretched further, enabling ultrasonic performance, but sadly we're just not quite there yet experimentally."

"At this stage there are several obstacles to making cheap graphene, so our microphone should be considered more a proof of concept" concludes Spasenovic. "The industry is working hard to improve graphene production - eventually this should mean we have better microphones at lower cost."
-end-
Contact

For further information, a full draft of the journal paper, or to talk with one of the researchers, contact IOP Senior Press Officer, Steve Pritchard: Tel: 0117 930 1032 E-mail: steve.pritchard@iop.org. For more information on how to use the embargoed material above, please refer to our embargo policy.

A copy of the paper can be found here: http://www.dropbox.com/sh/hofa7oxwdpainez/AACEpUStQe3h3pIuzV50pthJa?dl=0

IOP Publishing Journalist Area

The IOP Publishing Journalist Area gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos

Login details also give free access to IOPscience, IOP Publishing's journal platform. To apply for a free subscription to this service, please email the IOP Publishing Press team at ioppublishing.press@iop.org, with your name, organisation, address and a preferred username.

Multilayer graphene condenser microphone

The published version of the paper 'Multilayer graphene condenser microphone' (2D Mater. 2 045013) will be freely available online from Friday 27 November.

It will be available at http://iopscience.iop.org/2053-1583/2/4/045013.

2D Materials

2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.

IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide.

IOP Publishing is central to the Institute of Physics, a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute.

Go to ioppublishing.org or follow us @IOPPublishing.

The Institute of Physics

The Institute of Physics is a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

IOP Publishing

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.