Nav: Home

How ancient viruses got cannabis high

November 26, 2018

World's first cannabis chromosome map reveals the plant's evolutionary past and points to its future as potential medicine.

THC and CBD, bioactive substances produced by cannabis and sought by medical patients and recreational users, sprung to life thanks to ancient colonization of the plant's genome by viruses, U of T researchers have found.

The finding is only one of the insights revealed by the long-awaited cannabis genome map detailing gene arrangement on the chromosomes, published recently in the journal Genome Research. Among other revelations are discovery of a gene responsible for the production of cannabichromene, or CBC, a lesser known cannabinoid, as the active substances in cannabis are known, and new insights into how strain potency is determined.

"The chromosome map is an important foundational resource for further research which, despite cannabis' widespread use, has lagged behind other crops due to restrictive legislation," says Tim Hughes, a professor in the Donnelly Centre for Cellular and Biomolecular Research and co-leader of the study. Hughes is also a professor in the Department of Molecular Genetics and Senior Fellow at the Canadian Institute for Advancement of Research.

The researchers expect the map will speed up breeding efforts to create new strains with desired medical properties as well as varieties that can be grown more sustainably, or with increased resistance to diseases and pests.

The study was a three-part collaboration between Tim Hughes' team and those of Jonathan Page, of Aurora Cannabis and the University of British Columbia , and Harm van Bakel, of the Icahn School of Medicine at Mt Sinai in New York.

Hughes, Page and van Bakel first got together in 2011 when they released the first draft of cannabis genome which was too fragmented to reveal gene position on chromosomes.

The new map reveals how hemp and marijuana, which belong to the same species Cannabis sativa, evolved as separate strains with distinct chemical properties. Cannabis plants grown for drug use ("marijuana") are abundant in psychoactive tetrahydrocannabinol, or THC, whereas hemp produces cannabidiol, or CBD, popular of late for its medicinal potential. Some people use CBD to relieve pain and it is also being tested as a treatment for epilepsy, schizophrenia and Alzheimer's.

The enzymes making THC and CBD are encoded by THCA and CBDA synthase genes, respectively. Both are found on chromosome 6 of the ten chromosomes the cannabis genome is packaged into. There, the enzyme genes are surrounded by vast swathes of garbled DNA which came from viruses that colonized the genome millions of years ago. This viral DNA, or retroelements as it is known, made copies of itself that spread across the genome by jumping into other sites in the host cell's DNA.

"Plant genomes can contain millions of retroelement copies," says van Bakel, an assistant professor in the Icahn Institute for Data Science and Genomic Technology in New York and in the department of Genetics and Genome Sciences. "This means that linking genes on chromosomes is analogous to assembling a huge puzzle where three quarters of the pieces are nearly the same color. The combination of a genetic map and PacBio sequencing technology allowed us to increase the size of the puzzle pieces and find enough distinguishing features to facilitate the assembly process and pinpoint the synthase genes."

The researchers believe that gene duplication of the ancestral synthase gene and expanding retroelements drove ancient cannabis to split into chemically distinct types. Humans subsequently selected for plants containing desirable chemistry such as high THC.

The gene sequences for the THCA and CBDA synthases are nearly identical supporting the idea that they come from the same gene which was duplicated millions of years ago. Over time, one or both gene copies became scrambled by invading retroelements, and by evolving separately, they eventually came to produce two different enzymes - CBDA synthase found in hemp (fibre-type), and THCA synthase in drug-type (marijuana).

Because the enzymes are so similar at the DNA level, until this study it was not even clear if they are encoded by separate genes or by two versions of the same gene. Adding to the confusion was the fact that most strains produce both CBD and THC despite breeders' efforts to grow hemp varieties free from the mind-altering THC for users looking to avoid it.

The chromosome map now clearly shows that two distinct genes are at play which should make it possible to separate them during breeding to grow plants without THC.

Some psychoactive effects in medical strains could be coming from CBC, a lesser known cannabinoid that has unusual pharmacology including anti-inflammatory properties. The discovery of the gene responsible for CBC synthesis will make it possible for breeders to tailor its content in future varieties.

"Mainstream science has still not done enough because of research restrictions," says Page, of UBC and Chief Scientific Officer at Aurora, one of Canada's largest producers of medical cannabis. "Legalization and looming ease of research regulation really provide for opportunities for more research to be done. And Canada is leading the way."
-end-


University of Toronto

Related Genome Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.
Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.
A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.
Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
More Genome News and Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.