Nav: Home

Six feet under, a new approach to global warming

November 26, 2018

VANCOUVER, Wash. -A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface. The discovery opens a new possibility for dealing with the element as it continues to warm the Earth's atmosphere.

One hitch: Most of that carbon is concentrated deep beneath the world's wet forests, and they won't sequester as much as global temperatures continue to rise.

Marc Kramer, an associate professor of environmental chemistry at WSU Vancouver, drew on new data from soils around the world to describe how water dissolves organic carbon and takes it deep into the soil, where it is physically and chemically bound to minerals. Kramer and Oliver Chadwick, a soil scientist at the University of California Santa Barbara, estimate that this pathway is retaining about 600 billion metric tons, or gigatons, of carbon. That's more than twice the carbon added to the atmosphere since the dawn of the Industrial Revolution.

Scientists still need to find a way to take advantage of this finding and move some of the atmosphere's extra carbon underground, but Kramer says the soils can easily retain more. For starters, a new understanding of the pathway is "a major breakthrough" in our understanding of how carbon goes underground and stays there, he said.

"We know less about the soils on Earth than we do about the surface of Mars," said Kramer, whose work appears in the journal Nature Climate Change. "Before we can start thinking about storing carbon in the ground, we need to actually understand how it gets there and how likely it is to stick around. This finding highlights a major breakthrough in our understanding."

The study is the first global-scale evaluation of the role soil plays in dissolved organic carbon and the minerals that help store it. Kramer analyzed soils and climate data from the Americas, New Caledonia, Indonesia and Europe, and drew from more than 65 sites sampled to a depth of six feet from the National Science Foundation-funded National Ecological Observatory Network.

"These data show what kind of big science you can do when you have a national ecological observatory," Kramer said. For one thing, they let the researchers construct a global-scale map for this pathway of soil carbon accumulation.

Comparing different ecosystems, Kramer saw that moist environments sequestered far more carbon than dry ones. In desert climates, where rain is scarce and water easily evaporates, reactive minerals retain less than 6 percent of the soil's organic carbon. Dry forests are not much better. But wet forests can have as much as half their total carbon bound up by reactive minerals.

Wet forests tend to be more productive, with thick layers of organic matter from which water will leach carbon and transport it to minerals as much as six feet below the surface.

"This is one of the most persistent mechanisms that we know of for how carbon accumulates," Kramer said.

But while climate change is unlikely to directly affect the deep mineral-bound carbon, it can influence the pathway by which the carbon is buried. That is because the delivery system depends on water to leach carbon from roots, fallen leaves and other organic matter near the surface and carry it deep into the soil, where it will attach to iron- and aluminum-rich minerals eager to form strong bonds.

If temperatures near the surface warm, there can be less water moving through soils even if rainfall amounts stay the same or increase. More of the water that does fall can be lost to evaporation and plant respiration, making less water available to move carbon for long-term storage.
-end-


Washington State University

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.