AI turns mice to men (and women) bridging drug development translation barrier

November 26, 2018

TEL AVIV, Israel--(26th November, 2018)-- CytoReason, developer of the world's first machine learning platform for human immune system cell-level simulation, today announces publication of a groundbreaking new model for translating data from mouse models to human disease. Described in Nature Methods, the mouse to human model (Found In Translation or FIT), proved its ability to more accurately and effectively extrapolate results from the mouse-based research that is a vital, and necessary, part of every drug discovery and development program.

Much of what we know about disease is rooted in research done using mouse models (mice bred specifically to have the characteristics of the disease being studied). Furthermore, every single new drug will have first had to demonstrate some level of safety and efficacy on mice. But mice are not humans, and cross-species differences have consistently been a major stumbling block to translating lab-based research into something that will be meaningful for patients and clinicians.

Until now, knowledge of species differences has not been systematically incorporated into the interpretation of animal models. In trying to overcome this huge issue, scientists from CytoReason and the Systems Immunology and Precision Medicine Lab at the Technion Faculty of Medicine, developed their mouse to human model. This new model builds on CytoReason's mission of driving biological insights that transform drug discovery and development, lifting analysis of datasets out of an isolated vacuum and applying the full context of existing knowledge, in a similar way to CytoReason's Cell-Centered Models of the immune system do in terms of identifying and understanding gene/cell/cytokine relationships.

Tested on mouse models of 28 different human diseases, the mouse to human model outperformed direct cross-species extrapolation from mouse results, increasing the overlap of differentially expressed genes by 20-50% in pre-identifiable disease conditions. It uncovered novel disease-associated genes, highlighted signals that may otherwise have been missed and reduced false leads, with no experimental cost.

"This is a massive advance. Mice models are a necessary but flawed method of trying to understand what might happen in a human in any given situation,' said Prof. Shai Shen-Orr, Head of the Systems Immunology & Precision Medicine Lab, Technion Faculty of Medicine and Chief Scientist at CytoReason. "We have shown that we can significantly increase the accuracy of what we learn from these models. This changes the entire dynamic in terms of confidence in making the right decisions for the next steps in a given drug development program - doing mouse-kind and mankind a major service in the fight against disease."

"The mouse to human model clearly demonstrated its ability to uncover novel disease-associated genes. It predicted a role for Interleukin Enhancer Binding Factor 3 (ILF3) in the colon of Inflammatory Bowel Disease (IBD) patients compared to healthy people, even though ILF3 was not seen in either IBD mouse model or human datasets," said Rachelly Normand, lead author of the Nature Methods paper from the Department of Immunology, Faculty of Medicine, Technion. "We also didn't see any ILF3 associated to IBD in any past research. We did, however, see a significant increase in ILF3 in the colons of IBD patients versus healthy patients in laboratory tests, validating this as a real and novel finding of great significance."

At the heart of the process is the pairing of human and mouse model datasets with a human-disease dataset of comparable conditions to produce cross-species pairings. For each cross-species pairing in each species the difference was calculated between disease and control samples, which was then used to study how different human and mouse genes express under similar conditions and fed into the mouse to human model.

To translate mouse model data to human model data, the mouse to human model follows three steps:
  1. It computes a per-gene human effect size for each dataset
  2. Learns a gene-level statistical model of mouse-to-human relationships by modelling and re-sampling the data (bootstrapping)
  3. Predicts human effect size by computing the mean of the estimated effect sizes resulting from the re-sampling


Genes with high absolute effect-size predictions are more likely to be associated with the human condition of interest.

"This is a real breakthrough. Many drugs that appear to be effective in mice go on to fail in clinical development. This technology, part of our growing portfolio of translation capabilities, will help bridge the gap between pre-clinical results and clinical outcomes", said David Harel, CytoReason's CEO. "It is a demonstration of the power of our growing and rich data sets, feeding our proprietary machine learning technologies and unique methodologies, to more accurately understand context. This enables the transference of understanding from one element of research to another, in order to improve overall drug development and clinical outcomes."
-end-
Live Twitter Q&A

Prof. Shai Shen-Orr and lead author, Rachelly Normand, will be taking part on a live Q&A on our twitter feed @CytoreasonLtd on 11/27/18 between 09.00 and 10.00 (Eastern Daylight Time) 16.00 and 17.00 hours (Israel Time). Please follow/join uson Twitter at @CytoreasonLtd and use the #mousetoman for any questions you wish to ask.

About CytoReason

CytoReason has a singular focus on re-defining understanding of the immune system at a cellular level. CytoReason's technologies, data and process are all unique and proven. They lie at the heart of CytoReason's ability to map the correlation and causality of gene/cell/cytokine relationships that are central to understanding diseases, and their treatment - and do so faster and more accurately than ever before. Three core principles set CytoReason apart: Delivery of biology to biologists - replicating biological processes to answer biological questions; Continuous improvement - development of a learning model that gets richer and more accurate with every new data set; and Collaboration first, last and always - CytoReason has been built around the needs of our collaborators, and the need to discover and deliver valuable IP to those collaborators.

CytoReason

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.