Multitasking genes manage related traits in plants

November 27, 2002

HICKORY CORNERS, Mich. - Think of it as finding the ultimate genetic engineers.

A plant biologist at Michigan State University has harvested clues about genes that coordinate the development of plant parts that must work together.

The work, published in the Nov. 28 issue of the British science journal Nature, points to a single mechanism that regulates the growth of related parts in flowers - kind of a genetic project manager.

"This is why we're not just a discombobulated collection of parts. We're coordinated," said paper author Jeffrey Conner, an associate professor of plant biology. "I found that the same genes can affect pairs of related traits."

Scientists have understood that creatures evolve to optimize their ability to survive and reproduce, ultimately building a plant or animal better adapted to its environment.

In plants, this can be seen in the size and proportions of a flower. Flowers are serious business in the plant world, the ground zero of reproduction. The parts of a flower - the petal, stamen and pistil - must be precisely constructed to lure a pollinator in to both fertilize the plant and carry away genetic material in the pollen to other flowers.

If a flower's tube - where the nectar is - was short in relation to its stamens, the male parts of the flower, a bee could dive in, nab nectar and leave without rubbing up against the anthers and picking up their pollen.

"A flower has to evolve to successfully manipulate the behavior of the animal that pollinates it to get what it needs," Conner said. "The key is to make contact with the anthers and stigma. If that doesn't happen, it's worthless, from the plant's point of view."

Conner, who does his National Science Foundation-funded research at MSU's Kellogg Biological Station, spent years randomly crossbreeding generations of wild radish to understand how the plant coordinates its floral parts to best reproduce.

He found that consistently the plant would evolve to make sure the flower's tube and stamen parts developed in tight correlation, and that this development was traced to a number of genes doing double duty.

This genetic mechanism creates a design stability that carries the organism successfully through evolution.

While Conner works on plants, he said this tight orchestration is seen in all organisms. Genetic coordination, for instance, is the reason human arms don't grow out of concert with legs and send people's knuckles dragging to the ground.

"It keeps the parts in the right proportion, so they can do a job," he said.

Understanding that a single gene affects more than one part can help reveal why plants are successful and how they maintain a structural stability over time.

It also, Conner said, opens new areas of study in all organisms about the role one gene, or group of genes, can play.
-end-
FOR MSU NEWS on the Web, go to newsroom.msu.edu

ADDITIONAL MEDIA CONTACT:
Sue Nichols, University Relations 517-355-2281

MEDIA COMMUNICATIONS
Division of University Relations
403 Olds Hall
Michigan State University
East Lansing, MI 48824-1047

Michigan State University

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.