Humpback whales have brain cells also found in humans

November 27, 2006

Cetaceans, the group of marine mammals that includes whales and dolphins, have demonstrated remarkable auditory and communicative abilities, as well as complex social behaviors. A new study published online November 27, 2006 in The Anatomical Record, the official journal of the American Association of Anatomists,compared a humpback whale brain with brains from several other cetacean species and found the presence of a certain type of neuron cell that is also found in humans. This suggests that certain cetaceans and hominids may have evolved side by side. The study is available online via Wiley InterScience at http://www.interscience.wiley.com/journal/ar.

Although the biology of the humpback whale is well understood, there have been virtually no studies published on its brain composition, leaving an open question as to how brain structure may relate to the extensive behavioral and social abilities of this mammal. Although brain to body mass ratio, a rough measure of intelligence, is lower for baleen whales such as the humpback compared to toothed whales such as dolphins, the structure and large brain size of baleen whales suggests that they too have a complex and elaborate evolutionary history.

Patrick R. Hof and Estel Van der Gucht of the Department of Neuroscience at Mount Sinai School of Medicine in New York, NY, examined the brain of an adult humpback whale and compared it with the brain of a fin whale (another baleen species) and brains from several toothed whales, including three bottlenose dolphins, an Amazon river dolphin, a sperm whale, two beluga whales, a killer whale and several other whale and dolphin species. They found that the humpback cerebral cortex, the part of the brain where thought processes take place, was similar in complexity to smaller sized cetaceans such as dolphins. The large area of cortex found in these mammals is thought to be related to acoustic capabilities and the current study shows that it is organized into a system of core and belt regions. However, substantial variability was found between the cell structure of the cortex in humpbacks compared to toothed whales. The authors suggest that these differences may indicate differences in brain function and behavior in aquatic species that are not yet understood.

One feature that stood out in the humpback whale brain was the modular organization of certain cells into "islands" in the cerebral cortex that is also seen in the fin whale and other types of mammals. The authors speculate that this structural feature may have evolved in order to promote fast and efficient communication between neurons. The other notable feature was the presence of spindle cells in the humpback cortex in areas comparable to hominids and in other areas of the whale brain as well. Although the function of spindle neurons is not well understood, they are thought to be involved in cognitive processes and are affected by Alzheimer's disease and other debilitating brain disorders such as autism and schizophrenia. Spindle neurons were also found in the same location in toothed whales with the largest brains, which suggests that they may be related to brain size.

The authors note that spindle neurons probably first appeared in the common ancestor of hominids about 15 million years ago, since they are observed in great apes and humans, but not in lesser apes and other primates; in cetaceans they evolved earlier, possibly as early as 30 million years ago. It is possible that they were present in the ancestors of all cetaceans, but were retained only in those with the largest brains during their evolution. It may also be that they evolved several times independently in the two cetacean suborders; part of this process may have taken place at the same time as they appeared in the ancestor of great apes, which would be a rare case of parallel evolution.

"In spite of the relative scarcity of information on many cetacean species, it is important to note in this context that sperm whales, killer whales, and certainly humpback whales, exhibit complex social patterns that included intricate communication skills, coalition-formation, cooperation, cultural transmission and tool usage," the authors state. "It is thus likely that some of these abilities are related to comparable histologic complexity in brain organization in cetaceans and in hominids."

The authors conclude: "Cetacean and primate brains may be considered as evolutionary alternatives in neurobiological complexity and as such, it would be compelling to investigate how many convergent cognitive and behavioral features result from largely dissimilar neocortical organization between the two orders." They also suggest that the current study provides a framework for further investigations into the brain and behavior of cetaceans, which are naturally elusive, poorly documented and often endangered.
-end-
Article: "The Structure of the Cerebral Cortex of the Humpback Whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae)," Patrick R. Hof, Estel Van der Gucht, The Anatomical Record, Published Online: November 27, 2006. (DOI: 10.1002/ar.a.20407).

Wiley

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.