NYU, Scripps finding offers new path for treatment of diabetes

November 27, 2006

Researchers at New York University and the Scripps Research Institute have discovered a new enzyme, GAPDH, which regulates insulin pathways--a finding that offers a new direction for the treatment of diabetes. The research is reported in the most recent issue of the journal Nature Chemical Biology.

The enzyme GAPDH was previously unknown to be a factor in the development of diabetes in humans. It has also been discovered that the inhibition of GAPDH attenuates the diabetic disease symptom in model animals.

The research team, which included NYU's Departments of Biology and Chemistry and Scripps' Department of Cell Biology, used the worm Caenorhabditis elegans (C. elegans) to identify a new therapeutic target protein for diabetic treatment. C. elegans is the first animal species where RNA interference (RNAi) is discovered and thus, an excellent model organism for chemical genetic research. In this study, the researchers screened hundreds of chemical compounds to find one hit compound, which rescues the mutant C. elegans (diabetics model) from diabetes. Then, they identified the target protein, which was found to be the enzyme GAPDH. GAPDH has long been known as one of the important glycolytic enzymes, and its function is affected by insulin. However, this is the first discovery that GAPDH actively regulates the insulin pathway.

The research team constructed all the molecules by incorporating the fishing tag (linker) from the beginning, and facilitated the target fishing. The hit compound was named GAPDS (GAPDH segregator) as GAPDS disassemble the multi-part structure of GAPDH into monomers. The segregation of GAPDH releases the suppressor of insulin signaling from the cell membrane, and thus activates the insulin signaling to eventually help to treat diabetes.

While the C-elegans is a recommended model for chemical genetic study, treating them with chemical compounds presented difficulties for the researchers because they grow on the surface of agar. To overcome these challenges, the researchers devised a soaking method in which the worms were placed in a compound solution for 24 hours. By this method, the worms were exposed to equitable concentration of the compounds. The mutant C-elegans are in a growth arrested status. By addition of compounds, a re-growing of the worms into normal size was observed by GAPDS, which is analogous to treating diabetes patients with a drug.

While there are many drugs on the market to treat diabetes, the number of known disease-producing protein targets is small. Because diabetes has many causes, targeting several different proteins offers the most promising method for treatment. The discovery of GAPDH adds another target that can be addressed in combating the disease.
-end-


New York University

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.