Nav: Home

Scientists identify gene responsible for statin-induced muscle pain

November 27, 2007

BOSTON - Statins, the popular class of drugs used to lower cholesterol, are among the most commonly prescribed medications in developed countries. But for some patients, accompanying side effects of muscle weakness and pain become chronic problems and, in rare cases, can escalate to debilitating and even life-threatening damage.

Now a study led by investigators at Beth Israel Deaconess Medical Center (BIDMC), helps explain the source of these problems. Published in the December 2007 issue of The Journal of Clinical Investigation, the findings offer the first evidence that a gene known as atrogin-1 plays a key role in statin-related muscle toxicity.

"Although it is not known exactly how many of the 500 million individuals who take statins experience muscle pain and weakness, muscle symptoms are generally considered the most common side effects of these medications," explains co-senior author Vikas P. Sukhatme, MD, PhD, Vice Chair of Medicine for Interdepartmental and Translational Programs, Chief of the Division of Nephrology, and Chief of the Division of Interdisciplinary Medicine and Biotechnology at BIDMC.

"Statin users describe a wide spectrum of symptoms - at the most extreme end is a severe breakdown of skeletal muscle known as rhabdomyolysis," says Sukhatme, who is also the Victor J. Aresty Professor of Medicine at Harvard Medical School (HMS). "At the other end is 'grumbling muscles,' milder, more diffuse muscle soreness and cramps. This kind of symptomatic muscle weakness and pain is quite frequent, but often difficult to quantitate."

Known by such trade names as Lipitor, Zocor, Pavacol and Mevacor, statins lower cholesterol by inhibiting HMG-CoA reductase, a key enzyme in cholesterol synthesis.

Approximately five years ago, the study's co-senior author Stewart Lecker, MD, PhD, and colleagues in the HMS laboratory of Alfred Goldberg, MD, first discovered the atrogin-1 gene, so named for its role in muscle atrophy.

"We learned that atrogin-1 is rapidly turned on in wasting muscle," explains Lecker, who is an investigator in the Division of Nephrology at BIDMC and Assistant Professor of Medicine at HMS. Muscle wasting occurs in a large number of disease states, including cancer, AIDS, and kidney disease and can also occur when muscles are underused due to injury or lack of exercise. "In the absence of atrogin-1 activation," he adds, "muscle atrophy is diminished."

Since this initial discovery, atrogin-1 has been found in every existing model of muscle wasting, prompting Lecker and Sukhatme to investigate whether cholesterol-lowering statins might also be "turning on" this gene.

"We reasoned that since atrogin-1 plays a key role in the development of wasting in skeletal muscle, it might also mediate part of [patients'] sensitivity to statins," the authors write.

They proceeded to conduct three separate experiments to test this hypothesis. They first examined the expression of the atrogin-1 gene in biopsies of 19 human quadricep muscles from five control patients, six patients with muscle pain who were not being treated with statins and eight patients with muscle pain/damage who were using statins. Their results showed that atrogin-1 expression was significantly higher among the statin users.

Next, the scientists studied statins' effects on cultured muscle cells treated with various concentrations of lovastatin. Compared with control samples, the lovastatin-treated cells became progressively thinner and more damaged. But remarkably, say the authors, the cells lacking the atrogin-1 gene were resistant to statins' deleterious effects.

Finally, the authors tested the drug in zebrafish. And, they showed that just as in mammalian muscle cell culture, lovastatin led to muscle damage, even at low concentrations; as the concentration was increased, so too was the damage. And, once again, they observed that fish lacking the atrogin-1 gene were resistant to statin-induced damage.

"These three complementary experiments demonstrate that atrogin-1 has a fundamental role in statin-induced toxicity," notes Lecker. "Future experiments will be aimed at understanding how statins turn on the atrogin-1 response in muscle, and in ascertaining what transpires in muscle following atrogin-1 activation that leads to muscle damage and atrophy. The hope is that eventually patients will be able to glean statins' positive benefits to cholesterol metabolism and reduction of cardiovascular events while being spared accompanying muscle toxicities."

-end-

Study coauthors include BIDMC investigators Jun-Ichi Hanai and Peirang Cao (lead authors) and Preeti Tanksale; Shintaro Imamura, Eriko Koshimizu and Shuji Kishi of Schepens Eye Research Institute; Michiaki Yamashita, of the National Research Institute of Fisheries Science, Yokohama, Japan; and Paul Phillips of Scripps Mercy Hospital, San Diego, California.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and consistently ranks in the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.harvard.edu.

Beth Israel Deaconess Medical Center

Related Cholesterol Articles:

Cholesterol -- a key player at the lung surface
Cholesterol, a naturally occurring compound at the lung surface, has been shown to have a clear effect on the properties of this nanoscale film that covers the inside of our lungs.
Does boosting 'good' cholesterol really improve your health?
A new review addresses the mysteries behind 'good' HDL cholesterol and why boosting its levels does not necessarily provide protection from cardiovascular risk for patients.
Researchers zero-in on cholesterol's role in cells
For the first time, by using a path-breaking optical imaging technique to pinpoint cholesterol's location and movement within the cell membrane, chemists at the University of Illinois at Chicago have made the surprising finding that cholesterol is a signaling molecule that transmits messages across the cell membrane.
Cholesterol important for signal transmission in cells
Cholesterol can bind important molecules into pairs, enabling human cells to react to external signals.
Raising 'good cholesterol' not as effective as lowering 'bad cholesterol'
Low and very high levels of HDL, or 'good cholesterol' are associated with a higher risk of dying from heart disease, cancer and other causes, according to a study today in the Journal of the American College of Cardiology.
New gene for familial high cholesterol
New research from Denmark reveals the gene that explains one quarter of all familial hypercholesterolemia with very high blood cholesterol.
No need to fast before a cholesterol test
New research from Denmark, Canada and the US involving more than 300,000 individuals suggests that patients do not need to check their cholesterol levels on an empty stomach.
Cyclodextrin dissolves away cholesterol crystals
Cyclodextrin has been shown in mice to dissolve cholesterol crystals and prevent plaque formation.
New vaccine could prevent high cholesterol
A new cholesterol-lowering vaccine leads to reductions in 'bad' LDL cholesterol in mice and macaques, according to research published in Vaccine.
Enriched broccoli reduces cholesterol
Including a new broccoli variety in the diet reduces blood LDL-cholesterol levels by around 6 percent, according to the results of human trials led by the Institute of Food Research.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?  Through newly unearthed archival tape, we hear Sipple himself grapple with some of the most vexing topics of his day and ours - privacy, identity, the freedom of the press - not to mention the bonds of family and friendship.  Reported by Latif Nasser and Tracie Hunte. Produced by Matt Kielty, Annie McEwen, Latif Nasser and Tracie Hunte. Special thanks to Jerry Pritikin, Michael Yamashita, Stan Smith, Duffy Jennings; Ann Dolan, Megan Filly and Ginale Harris at the Superior Court of San Francisco; Leah Gracik, Karyn Hunt, Jesse Hamlin, The San Francisco Bay Area Television Archive, Mike Amico, Jennifer Vanasco and Joey Plaster. Support Radiolab today at Radiolab.org/donate.
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.