Another human footprint in the ocean

November 27, 2014

Human-induced changes to Earth's carbon cycle - for example, rising atmospheric carbon dioxide and ocean acidification - have been observed for decades. However, a study published this week in Science showed human activities, in particular industrial and agricultural processes, have also had significant impacts on the upper ocean nitrogen cycle.

The rate of deposition of reactive nitrogen (i.e., nitrogen oxides from fossil fuel burning and ammonia compounds from fertilizer use) from the atmosphere to the open ocean has more than doubled globally over the last 100 years. This anthropogenic addition of nitrogen has reached a magnitude comparable to about half of global ocean nitrogen fixation (the natural process by which atmospheric nitrogen gas becomes a useful nutrient for organisms). David Karl, Professor of Oceanography and Director of the Daniel K. Inouye Center for Microbial Oceanography at the University of Hawai'i, teamed up with researchers from Korea, Switzerland and the U.S. National Oceanic and Atmospheric Administration to assess changes in nitrate concentration between the 1960s and 2000s across the open North Pacific Ocean.

Their analysis, which could discern human-derived nitrogen from natural nitrogen fixation, revealed that the oceanic nitrate concentration increased significantly over the last 30 years in surface waters of the North Pacific due largely to the enhanced deposition of nitrogen from the atmosphere.

"This is a sobering result, one that I would not have predicted," said Karl. "The North Pacific is so vast it is hard to imagine that humans could impact the natural nitrogen cycle."

The researchers used ocean data in conjunction with the state-of-the-art Earth System Model to reconstruct the history of the oceanic nitrate concentration and make predictions about the future state of the North Pacific Ocean. Their assessment revealed a consistent picture of increasing nitrate concentrations, the magnitude and pattern of which can only be explained by the observed increase in atmospheric nitrogen deposition.

Enhanced nitrogen deposition has several potential ecological ramifications. Because biological activity is limited by nitrate availability in the North Pacific Ocean, the input of new nitrogen from the atmosphere may increase photosysnthesis in the sunlit layers and export of carbon-rich organic material out of the surface ocean into the deep.

"The burgeoning human population needs energy and food - unfortunately, nitrogen pollution is an unintended consequence and not even the open ocean is immune from our daily industrial activities," said Karl.

Given the likelihood that the magnitude of atmospheric nitrogen deposition will continue to increase in the future, the North Pacific Ocean could rapidly switch to having surplus nitrate. Thus, past and future increases in atmospheric nitrogen deposition have the potential to alter the base of the marine food web; and, in the long term, the structure of the ecosystem.

In particular, the shift in nutrient availability could favor marine organisms that thrive under the high nitrate and low phosphorus conditions. If similar trends are confirmed in the Atlantic and Indian Oceans, it would constitute another example of a global-scale alteration of the Earth system. Further, the findings of this study of the North Pacific highlight the need for greater controls on the emission of nitrogen compounds during combustion and agricultural processes.
-end-
This research was supported by the Korean National Research Foundation of Ministry of Science, ICT and Future Planning, Science and Technology (Global Research Project), through a novel collaboration between scientists at Pohang University of Science and Technology and the University of Hawai'i. David Karl's participation was also supported by the U. S. National Science Foundation and the Gordon and Betty Moore Foundation through grants GBMF480.01 and GBMF3794.

I-N Kim, K Lee, N Gruber, D M Karl, J L Bullister, S Yang, T-W Kim (2014). Increasing anthropogenic nitrogen in the North Pacific Ocean. Science

University of Hawaii at Manoa

Related Ocean Acidification Articles from Brightsurf:

For red abalone, resisting ocean acidification starts with mom
Red abalone mothers from California's North Coast give their offspring an energy boost when they're born that helps them better withstand ocean acidification compared to their captive, farmed counterparts, according to a study from the Bodega Marine Laboratory at the University of California, Davis.

Ocean warming and acidification effects on calcareous phytoplankton communities
A new study led by researchers from the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) warns that the negative effects of rapid ocean warming on planktonic communities will be exacerbated by ocean acidification.

Sentinels of ocean acidification impacts survived Earth's last mass extinction
Two groups of tiny, delicate marine organisms, sea butterflies and sea angels, were found to be surprisingly resilient--having survived dramatic global climate change and Earth's most recent mass extinction event 66 million years ago, according to research published this week in the Proceedings of the National Academy of Sciences.

Great Barrier Reef 'glue' at risk from ocean acidification
Scientists have suspected that increasing ocean acidity would weaken and thin the structures underpinning tropical reefs.

Ocean acidification causing coral 'osteoporosis' on iconic reefs
Scientists have long suspected that ocean acidification is affecting corals' ability to build their skeletons, but it has been challenging to isolate its effect from that of simultaneous warming ocean temperatures, which also influence coral growth.

Arctic Ocean acidification worse than previously expected
Arctic Ocean acidification worse than previously expected.

Protecting bays from ocean acidification
As oceans absorb more man-made carbon dioxide from the air, a process of ocean acidification occurs that can have a negative impact on marine life.

Ocean acidification prediction now possible years in advance
CU Boulder researchers have developed a method that could enable scientists to accurately forecast ocean acidity up to five years in advance.

Ocean acidification impacts oysters' memory of environmental stress
Researchers from the University of Washington School of Aquatic and Fishery Sciences have discovered that ocean acidification impacts the ability of some oysters to pass down 'memories' of environmental trauma to their offspring.

Coral 'helper' stays robust under ocean acidification
A type of algae crucial to the survival of coral reefs may be able to resist the impacts of ocean acidification caused by climate change.

Read More: Ocean Acidification News and Ocean Acidification Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.