Research reveals the scale at which Earth's mantle composition varies

November 27, 2017

ROVIDENCE, R.I. [Brown University] -- New research by Brown University geochemists provides new insights on the scale at which Earth's mantle varies in chemical composition. The findings could help scientists better understand the mixing process of mantle convection, the slow churning that drives the movement of Earth's tectonic plates.

"We know that the mantle is heterogeneous in composition, but it's been difficult to figure out how large or small those heterogeneities might be," said Boda Liu, a Ph.D. student in geology at Brown. "What we show here is that there must be heterogeneities of at least a kilometer in size to produce the chemical signature we observe in rocks derived from mantle materials."

The research, which Liu co-authored with Yan Liang, a professor in Brown's Department of Earth Environmental and Planetary Sciences, is published in Science Advances.

Earth's crust is on a constantly moving conveyer belt driven by the convecting mantle. At mid-ocean ridges, the boundaries on the ocean floor where tectonic plates are pulling away from each other, new crust is created by eruption of magmas formed by the rising of the mantle materials from depth. At subductions zones, where one tectonic plate slides beneath another, old crust material, weathered by processes on the surface, is pushed back down into the mantle. This recycling can create mantle materials of different or "enriched" compositions, which geochemists refer to as "heterogeneities." What happens to that enriched material once it's recycled isn't fully understood.

"This is one of the big questions in Earth science," Liang said. "To what extent does mantle convection mix and homogenize these heterogeneities out? Or how might these heterogeneities be preserved?"

Scientists learn about the composition of the mantle by studying mid-ocean ridge basalts (MORBs), rocks formed by the solidification of magmas erupted on the seafloor. Like fingerprints, isotope compositions of MORBs can be used to trace the mantle source from which they were derived.

Another type of seafloor rock called abyssal peridotites is the leftover mantle after the formation of MORBs. These are chunks of mantle rock that once were the uppermost mantle and later uplifted to the seafloor. Abyssal peridotites have a different isotope composition than MORBs that appear to come from the same mantle region. To explain that difference in isotope compositions, scientists have concluded that the MORBs are capturing the isotope signal from pockets of enriched material -- the remnants of subducted crust preserved in the mantle.

The question this new study sought to answer is how large those enriched pockets would need to be for their isotope signature to survive the trip to the surface. As magma rises toward the surface, it interacts with the ambient mantle, which would tend to dampen the signal of enriched material in the melt. For their study, Liu and Liang modeled the melting and magma transport processes. They found that in order to produce the different isotope signals between MORBs and abyssal peridotites, the pockets of enriched material at depth would need to be at least one kilometer in size.

"If the length scale of the heterogeneity is too small, the chemical exchange during magma flow would wipe the heterogeneities out," Liang said. "So in order to produce the composition difference we see, our model shows that the heterogeneity needs to be a kilometer or more."

The researchers hope their study will add a new perspective to the fine-scale structure of the mantle produced by mantle convection.

"Our contribution here is to give some sense of how large some of these heterogeneities might be," Liang said. "So the question to the broader community becomes: What might be the deep mantle processes that can produce this?"
-end-
The research was supported by a grant from the National Science Foundation (EAR-1624516).

Brown University

Related Seafloor Articles from Brightsurf:

Microbial diversity below seafloor is as rich as on Earth's surface
For the first time, researchers have mapped the biological diversity of marine sediment, one of Earth's largest global biomes.

Deep-seabed mining lastingly disrupts the seafloor food web
Deep-seabed mining is considered a way to address the increasing need of rare metals.

How the seafloor of the Antarctic Ocean is changing - and the climate is following suit
Experts have reconstructed the depth of the Southern Ocean at key phases in the last 34 million years of the Antarctic's climate history

Coastal cities leave up to 75% of seafloor exposed to harmful light pollution
New research is the first in the world to quantify the extent to which biologically important artificial light is prevalent on the seafloor and could, in turn, be having a detrimental effect on marine species.

Marine microorganisms: How to survive below the seafloor
Foraminifera, an ancient and ecologically highly successful group of marine organisms, are found on and below the seafloor.

Four new species of giant single-celled organisms discovered on Pacific seafloor
Two new genera and four new species of giant, single-celled xenophyophores (protozoans belonging to a group called the foraminifera) were discovered in the deep Pacific Ocean during a joint project between scientists at the National Oceanography Centre, UK; the University of Hawai'i and the University of Geneva.

Delicate seafloor ridges reveal the rapid retreat of past Antarctic ice
Detailed seafloor mapping of submerged glacial landforms finds that Antarctic ice sheets in the past retreated far faster than the most rapid pace of retreat observed today, exceeding even the most extreme modern rates by at least an order of magnitude, according to a new study.

Window to another world: Life is bubbling up to seafloor with petroleum from deep below
Microbial life is bubbling up to the ocean floor along with fluids from deeply buried petroleum reservoirs, reports a team of scientists from the University of Calgary and the Marine Biological Laboratory, Woods Hole.

Scientists find highest ever level of microplastics on seafloor
An international research project has revealed the highest levels of microplastic ever recorded on the seafloor, with up to 1.9 million pieces in a thin layer covering just 1 square meter.

Seafloor currents may direct microplastics to biodiversity hotspots of the deep
Microplastic particles entering the sea surface were thought to settle to the seafloor directly below them, but now, a new study reveals that slow-moving currents near the bottom of the ocean direct the flow of plastics, creating microplastic hotpots in sediments of the deep sea.

Read More: Seafloor News and Seafloor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.