Nav: Home

Autism and the smell of fear

November 27, 2017

Autism typically involves the inability to read social cues. We most often associate this with visual difficulty in interpreting facial expression, but new research at the Weizmann Institute of Science suggests that the sense of smell may also play a central role in autism. As reported today in Nature Neuroscience, Weizmann Institute of Science researchers show that people on the autism spectrum have different - and even opposite - reactions to odors produced by the human body. These odors are ones that we are unaware of smelling, but which are, nonetheless, a part of the nonverbal communication that takes place between people, and which have been shown to affect our moods and behavior. Their findings may provide a unique window on autism, including, possibly, on the underlying developmental malfunctions in the disorder.

Researchers in the lab of Prof. Noam Sobel in the Institute's Neurobiology Department investigate, among other things, the smells that announce such emotions as happiness, fear or aggression to others. Although this sense is not our primary sense, as it is in many other mammals, we still subliminally read and react to certain odors. For example "smelling fear," even if we cannot consciously detect its odor, is something we may do without thinking. Since this is a form of social communication, Sobel and members of his lab wondered whether it might be disrupted in a social disorder like autism.

To conduct their experiments, Sobel and lab members Yaara Endevelt-Shapira and Ofer Perl, together with other members of his lab, devised a series of experiments with a group of participants on the high functioning end of the autism spectrum who volunteered for the study. To begin with, the researchers tested the ability of both autistic and control volunteers to identify smells that can be consciously detected, including human smells like sweat. There was no significant difference between the groups at this stage, meaning the sense of smell in the autistic participants was not significantly different from that of controls.

Two groups were then exposed to either to the "smell of fear" or to a control odor. The smell of fear was sweat collected from people taking skydiving classes, and control odor was sweat from the same people, only this time it had been collected when they were just exercising -- without feeling fear.

This is where differences emerged: Although neither group reported detecting dissimilarities between the two smells, their bodies reacted to each in a different way. In the control group, smelling the fear-induced sweat produced measurable increases in the fear response, for example in skin conductivity, while the everyday sweat did not. In the autistic men, fear-induced sweat lowered their fear responses, while the odor of "calm sweat" did the opposite: It raised their measurable anxiety levels.

Next, the group created talking robotic mannequins that emitted different odors through their nostrils. These mannequins gave the volunteers, who were unaware of the olfactory aspect of the experiment, different tasks to conduct. Using mannequins enabled the researchers to have complete control over the social cues - odor-based or other - that the subjects received. The tasks were designed to evaluate the level of trust that the volunteers placed in the mannequins - and here, too, the behavior of autistic volunteers was the opposite of the control group: They displayed more trust in the mannequin that emitted the fear-induced odor and less in the one that smelled "calmer."

In continuing experiments, the researchers asked whether other subliminal "social odors" have a different impact in autism than in control groups. In one, the volunteers were exposed to sudden loud noises during their sessions while at the same time they were also exposed to a potentially calming component of body-odor named hexadecanal. Another automatic fear response - blinking - was recorded using electrodes above the muscles of the eye. Indeed, the blink response in the control group was weaker when they were exposed to hexadecanal, while for those in the autistic group this response was stronger with hexadecanal.

In other words, the autistic volunteers in the experiment did not display an inability to read the olfactory social cues in smell, but rather they misread them. Sobel and his group think that this unconscious difference may point to a deeper connection between our sense of smell and early development. Research in recent years has turned up smell receptors like those in our nasal passages in all sorts of other places in our bodies - from our brains to our uteri. It has been suggested that these play a role in development, among other things. In other words, it is possible that the sensing of subtle chemical signals may go awry at crucial stages in the brain's development in autism. "We are still speculating, at this point," says Sobel, "but we are hoping that further research in our lab and others will clarify both the function of these unconscious olfactory social cues and their roots in such social disorders as autism."
-end-
Prof. Noam Sobel's research is supported by the Azrieli National Institute for Human Brain Imaging and Research, which he heads; the Carl and Micaela Einhorn-Dominic Institute for Brain Research, which he heads; the Nadia Jaglom Laboratory for the Research in the Neurobiology of Olfaction; the Adelis Foundation; the late H. Thomas Beck; the Rob and Cheryl McEwen Fund for Brain Research; the Mike Rosenbloom Foundation; European Research Council. Prof. Sobel is the incumbent of the Sara and Michael Sela Professorial Chair of Neurobiology.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute of Science

Related Autism Articles:

Brain protein mutation from child with autism causes autism-like behavioral change in mice
A de novo gene mutation that encodes a brain protein in a child with autism has been placed into the brains of mice.
Autism and theory of mind
Theory of mind, or the ability to represent other people's minds as distinct from one's own, can be difficult for people with autism.
Potential biomarker for autism
A study of young children with autism spectrum disorder published in JNeurosci reveals altered brain waves compared to typically developing children during a motor control task.
Autism and the smell of fear
Autism typically involves the inability to read social cues. We most often associate this with visual difficulty in interpreting facial expression, but new research at the Weizmann Institute of Science suggests that the sense of smell may also play a central role in autism.
Autism often associated with multiple new mutations
Most autism cases are in families with no previous history of the disorder.
State laws requiring autism coverage by private insurers led to increases in autism care
A new study led by researchers at the Johns Hopkins Bloomberg School of Public Health has found that the enactment of state laws mandating coverage of autism spectrum disorder (ASD) was followed by sizable increases in insurer-covered ASD care and associated spending.
Autism's gender patterns
Having one child with autism is a well-known risk factor for having another one with the same disorder, but whether and how a sibling's gender influences this risk has remained largely unknown.
Pinpointing the origins of autism
The origins of autism remain mysterious. What areas of the brain are involved, and when do the first signs appear?
Genes, ozone, and autism
Exposure to ozone in the environment puts individuals with high levels of genetic variation at an even higher risk for developing autism than would be expected just by adding the two risk factors together, a new analysis shows.
New form of autism found
Autism spectrum disorders (ASD) affect around one percent of the world's population and are characterized by a range of difficulties in social interaction and communication.
More Autism News and Autism Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab