Amputees can learn to control a robotic arm with their minds

November 27, 2017

A new study by neuroscientists at the University of Chicago shows how amputees can learn to control a robotic arm through electrodes implanted in the brain.

The research, published in Nature Communications, details changes that take place in both sides of the brain used to control the amputated limb and the remaining, intact limb. The results show both areas can create new connections to learn how to control the device, even several years after an amputation.

"That's the novel aspect to this study, seeing that chronic, long-term amputees can learn to control a robotic limb," said Nicho Hatsopoulos, PhD, professor of organismal biology and anatomy at UChicago and senior author of the study. "But what was also interesting was the brain's plasticity over long-term exposure, and seeing what happened to the connectivity of the network as they learned to control the device."

Previous experiments have shown how paralyzed human patients can move robotic limbs through a brain machine interface. The new study is one of the first to test the viability of these devices in amputees as well.

The researchers worked with three rhesus monkeys who suffered injuries at a young age and had to have an arm amputated to rescue them four, nine and 10 years ago, respectively. Their limbs were not amputated for the purposes of the study. In two of the animals, the researchers implanted electrode arrays in the side of the brain opposite, or contralateral, to the amputated limb. This is the side that used to control the amputated limb. In the third animal, the electrodes were implanted on the same side, or ipsilateral, to the amputated limb. This is the side that still controlled the intact limb.

The monkeys were then trained (with generous helpings of juice) to move a robotic arm and grasp a ball using only their thoughts. The scientists recorded the activity of neurons where the electrodes were placed, and used a statistical model to calculate how the neurons were connected to each other before the experiments, during training and once the monkeys mastered the activity.

The connections between neurons on the contralateral side--the side that had been controlling the amputated arm--were sparse before the training, most likely because they had not been used for that function in a long time. But as training progressed, these connections became more robust and dense in areas used for both reaching and grasping.

On the ipsilateral side--the side that had been controlling the monkey's intact arm--the connections were dense at the beginning of the experiments. But the researchers saw something interesting as training progressed: first the connections were pruned and the networks thinned, before rebuilding into a new, dense network.

"That means connections were shedding off as the animal was trying to learn a new task, because there is already a network controlling some other behavior," said Karthikeyan Balasubramanian, PhD, a postdoctoral researcher who led the study. "But after a few days it started rebuilding into a new network that can control both the intact limb and the neuroprosthetic."

Now the team plans to continue their work by combining it with research by other groups to equip neuroprosthetic limbs with sensory feedback about touch and proprioception, which is the sense of where the limb is located in space.

"That's how we can begin to create truly responsive neuroprosthetic limbs, when people can both move it and get natural sensations through the brain machine interface," Hatsopoulos said.
-end-
The study, "Changes in Cortical Network Connectivity with Long-term Brain-Machine Interface Exposure after Chronic Amputation," was published on November 27, 2017. Additional authors include Mukta Vaidya and Kazutaka Takahashi from the University of Chicago; Joshua Southerland and Andrew H. Fagg from the University of Oklahoma; Islam Badreldin and Karim Oweiss from the University of Florida; Ahmed Eleryan from Michigan State University; Kai Qian from the Illinois Institute of Technology; and Marc W. Slutzky from Northwestern University.

University of Chicago Medical Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.