Nav: Home

Stem cells in intestinal lining may shed light on behavior of cancer cells

November 27, 2017

URBANA, Ill. - The lining of the intestines - the epithelium - does more than absorb nutrients from your lunch. It grows, shrinks, and adjusts the very makeup of its cells in response to whatever you just ate. And understanding that process might just give scientists new insights into the behavior of cancer cells.

"We are interested in how your diet affects the process of growth and renewal of intestinal epithelial cells, but we can learn so much more from this," explains Megan Dailey, assistant professor in the Department of Animal Sciences at the University of Illinois. "For example, can you feed stem cells to make tissues of different sizes and cellular makeup? Can you tell a tissue that's proliferating when to stop growing?"

The ability of the intestinal lining to respond to your food depends on stem cells tucked down in tiny crypts along the epithelium. Certain cues cause stem cells to grow more epithelium, to be able to handle a higher volume of food coming in.

"If I go on vacation and start eating more food, my tissues will grow. But at some point, I'll come back and my intestinal epithelium will stop growing and shrink back down," Dailey says. "How do the stem cells know to grow it or when to stop? What's the signal?"

Stem cells are always replacing cells that are lost during normal wear and tear in the intestines. Dailey says most adults' stem cells are focused on this renewal process, rather than growth, most of the time.

Dailey and a team of researchers looked for signals and cellular responses of intestinal epithelial cells during growth and renewal, and published their findings in the Journal of Cellular Physiology.

The team isolated stem cells from intestinal epithelial crypts in mice and exposed them to varying levels of glucose, representing levels normally seen before or after a meal. Dailey clarifies that the study was not designed to simulate high- or low-sugar diets. She says glucose is always circulating at a low level in our blood stream. After any meal, there's a major surge of the nutrient.

The researchers suspected that the availability of glucose might trigger a shift from a renewal mode to a growth mode. To confirm this, they looked at the rates of two standard metabolic pathways that are associated with renewal (oxidative phosphorylation) and growth (glycolysis). Both pathways convert sugar or sugar products into the energy molecule ATP, but oxidative phosphorylation produces a lot more of the molecule.

The study showed that stem cells exposed to higher levels of glucose had higher rates of glycolysis, but rates of oxidative phosphorylation didn't change. In other words, the stem cells switched into a growth mode when exposed to more glucose.

"In the past, a switch from oxidative phosphorylation to glycolysis was thought to be an indication of cancer. Now we know it is just an indication of a cell that's proliferating. And our team was the first to find it in intestinal epithelial stem cells," Dailey says.

Next, the researchers investigated the driving force behind the switch to glycolysis, focusing on protein kinase networks associated with glucose transport into the cell. They assumed the same networks were operating in both low and high glucose conditions, and that they were more active when exposed to higher levels of glucose.

"Turns out, not the case," Dailey says. "A totally different pathway is used under low and high glucose conditions. The stem cell is able to say, 'I have high glucose and I am going to use different protein kinase networks to get it into the cell.'"

The use of two different protein kinase networks associated with renewal and cell proliferation has implications for cancer research. "If you want to stop cell proliferation by blocking protein kinase networks, you need to know what networks to target. We've shown that networks associated with growth are different from renewal," Dailey says.

In addition to its cancer applications, the research provides some basic answers about how stem cells work and paves the way for further research, according to Dailey. "We were approaching intestinal epithelial stem cells as a model system to ask, 'How can you make tissues of different sizes and cellular makeup? Can you feed stem cells of your kidneys or bone marrow and get different types of tissue? There's a lot to learn, but we had to start from the beginning," she says.
-end-
The article, "Glucose stimulates intestinal epithelial crypt proliferation by modulating cellular energy metabolism," is published in the Journal of Cellular Physiology. Authors include Weinan Zhou, Deepti Ramachandran, Abdelhak Mansouri, and Dailey. The work was supported by USDA Hatch grant ILLU-538-926.

University of Illinois College of Agricultural, Consumer and Environmental Sciences

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.