Nav: Home

Researchers aim to prevent medical imaging cyberattacks

November 27, 2018

CHICAGO - Two new studies being presented this week at the annual meeting of the Radiological Society of North America (RSNA) address the potential risk of cyberattacks in medical imaging.

The Internet has been highly beneficial to health care--radiology included--improving access in remote areas, allowing for faster and better diagnoses, and vastly improving the management and transfer of medical records and images. However, increased connectivity can lead to increased vulnerability to outside interference.

Researchers and cybersecurity experts have begun to examine ways to mitigate the risk of cyberattacks in medical imaging before they become a real danger.

Medical imaging devices, such as X-ray, mammography, MRI and CT machines, play a crucial role in diagnosis and treatment. As these devices are typically connected to hospital networks, they can be potentially susceptible to sophisticated cyberattacks, including ransomware attacks that can disable the machines. Due to their critical role in the emergency room, CT devices may face the greatest risk of cyberattack.

In a study presented today, researchers from Ben-Gurion University of the Negev in Beer-Sheva, Israel, identified areas of vulnerability and ways to increase security in CT equipment. They demonstrated how a hacker might bypass security mechanisms of a CT machine in order to manipulate its behavior. Because CT uses ionizing radiation, changes to dose could negatively affect image quality, or--in extreme cases--pose harm to the patient.

"In the current phase of our research, we focus on developing solutions to prevent such attacks in order to protect medical devices," said Tom Mahler, Ph.D. candidate and teaching assistant at Ben-Gurion University of the Negev. "Our solution monitors the outgoing commands from the device before they are executed, and will alert--and possibly halt--if it detects anomalies."

For anomaly detection, the researchers developed a system using various advanced machine learning and deep learning methods, with training data consisting of actual commands recorded from real devices. The model learns to recognize normal commands and to predict if a new, unseen command is legitimate or not. If an attacker sends a malicious command to the device, the system will detect it and alert the operator before the command is executed.

"In cybersecurity, it is best to take the 'onion' model of protection and build the protection in layers," Mahler said. "Previous efforts in this area have focused on securing the hospital network. Our solution is device-oriented, and our goal is to be the last line of defense for medical imaging devices."

He added that it is also important to note that although these types of attacks are theoretically possible, there is no indication that they ever actually occurred.

"If health care manufacturers and hospitals will take a proactive approach, we could prevent such attacks from happening in the first place," he said.

A second study, to be presented tomorrow, looked at the potential to tamper with mammogram results.

The researchers trained a cycle-consistent generative adversarial network (CycleGAN), a type of artificial intelligence application, on 680 mammographic images from 334 patients, to convert images showing cancer to healthy ones and to do the same, in reverse, for the normal control images. They wanted to determine if a CycleGAN could insert or remove cancer-specific features into mammograms in a realistic fashion.

"As doctors, it is our moral duty to first protect our patients from harm," said Anton S. Becker, M.D., radiology resident at University Hospital Zurich and ETH Zurich, in Switzerland. "For example, as radiologists we are used to protecting patients from unnecessary radiation. When neural networks or other algorithms inevitably find their way into our clinical routine, we will need to learn how to protect our patients from any unwanted side effects of those as well."

The images were presented to three radiologists, who reviewed the images and indicated whether they thought the images were genuine or modified. None of the radiologists could reliably distinguish between the two.

"Neural networks, such as CycleGAN, are not only able to learn what breast cancer looks like," Dr. Becker said, "we have now shown that they can insert these learned characteristics into mammograms of healthy patients or remove cancerous lesions from the image and replace them with normal looking tissue."

Dr. Becker anticipates that this type of attack won't be feasible for at least five years and said patients shouldn't be concerned right now. Still, he hopes to draw the attention of the medical community, and hardware and software vendors, so that they may make the necessary adjustments to address this issue while it is still theoretical.

Dr. Becker said that artificial intelligence, in general, will greatly enrich radiology, offering faster diagnoses and other advantages. He added that there are positive aspects to these findings as well.

"Neural networks can teach us more about the image characteristics of certain cancers, making us better doctors."
-end-
Mahler's co-authors are Erez Shalom, Ph.D., Arnon Makori, M.D., Israel Goldenberg, B.Sc., Ilan Shelef, M.D., Yuval Elovici, Ph.D., and principal investigator Yuval Shahar, M.D., Ph.D. Dr. Becker's co-authors are Lukas Jendele, Ondrej Skopek, Soleen Ghafoor, M.D., Nicole Berger, M.D., Magda Marcon, M.D., and Ender Konukoglu, Ph.D.

Note: Copies of RSNA 2018 news releases and electronic images will be available online at RSNA.org/press18 beginning Monday, Nov. 26.

RSNA is an association of over 54,000 radiologists, radiation oncologists, medical physicists and related scientists, promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

Editor's note: The data in these releases may differ from those in the published abstract and those actually presented at the meeting, as researchers continue to update their data right up until the meeting. To ensure you are using the most up-to-date information, please contact us.

For patient-friendly information on CT and mammography, visit RadiologyInfo.org.

Radiological Society of North America

Related Medical Imaging Articles:

Use of medical imaging
This observational study looked at patterns of use for computed tomography (CT), magnetic resonance imaging (MRI), ultrasound and nuclear medicine imaging in the United States and in Ontario, Canada, from 2000 to 2016.
Medical imaging rates continue to rise despite push to reduce their use
The rates of use of CT, MRI and other scans have continued to increase in both the US and Ontario, Canada, according to a new study of more than 135 million imaging exams conducted by researchers at UC Davis, UC San Francisco and Kaiser Permanente.
Two-in-one contrast agent for medical imaging
Magnetic resonance imaging (MRI) visualizes internal body structures, often with the help of contrast agents to enhance sensitivity.
Medical imaging rates during pregnancy
Researchers looked at rates of medical imaging (CT, MRI, conventional x-rays, angiography, fluoroscopy and nuclear medicine) during pregnancy in this observational study that included nearly 3.5 million pregnant women in the United States and Canada from 1996 to 2016.
Scientists discover new method for developing tracers used for medical imaging
University of North Carolina researchers discovered a method for creating radioactive tracers to better track pharmaceuticals in the body as well as image diseases, such as cancer, and other medical conditions.
Radiology publishes roadmap for AI in medical imaging
In August 2018, a workshop was held at the National Institutes of Health (NIH) in Bethesda, Md., to explore the future of artificial intelligence (AI) in medical imaging.
Study could lead to safer and cheaper 3D medical imaging
A new study led by The Australian National University (ANU) has discovered a promising way to significantly lower doses of X-rays that has the potential to revolutionise 3D medical imaging and make screening for early signs of disease much cheaper and safer.
Researchers aim to prevent medical imaging cyberattacks
Researchers and cybersecurity experts have begun to examine ways to mitigate the risk of cyberattacks in medical imaging before they become a real danger.
SPIE journal announces public access to largest multi-lesion medical imaging dataset
A paper published today in the Journal of Medical Imaging - ''DeepLesion: Automated mining of large-scale lesion annotations and universal lesion detection with deep learning,'' -- announced the open availability of the largest CT lesion-image database accessible to the public.
Versatile ultrasound system could transform how doctors use medical imaging
A new ultrasound system that uses optical, instead of electronic components, could improve performance while giving doctors significantly more flexibility in how they use ultrasound to diagnose and treat medical problems.
More Medical Imaging News and Medical Imaging Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab