Electrical stimulation in the nose induces sense of smell in human subjects

November 27, 2018

Boston, Mass - Physicians at Massachusetts Eye and Ear have, for the first time, induced a sense of smell in humans by using electrodes in the nose to stimulate nerves in the olfactory bulb, a structure in the brain where smell information from the nose is processed and sent to deeper regions of brain. Reporting online today in International Forum of Allergy & Rhinology, the research team describes their results, which provide a proof of concept for efforts to develop implant technology to return the sense of smell to those who have lost it.

"Our work shows that smell restoration technology is an idea worth studying further," said corresponding author Eric Holbrook, MD, Chief of Rhinology at Mass. Eye and Ear and associate professor of otolaryngology at Harvard Medical School. "The development of cochlear implants, for example, didn't really accelerate until someone placed an electrode in the cochlea of a patient and found that the patient heard a frequency of some type."

Smell loss, or anosmia, has an estimated prevalence of 5 percent of the general population. While some cases of anosmia may be treated by caring for an underlying cause (often nasal obstruction, in which odors can't reach the nerves of the olfactory system due to swelling, polyps or sinus disease), other cases involving damage to the sensory nerves of the nose (i.e. head injury, viruses and aging) are much more complex. There are currently no proven therapies for these cases.

Our sense of smell not only contributes to our enjoyment of life, but also to our daily safety and well being. We rely on our sense of smell to make us aware of smoke in detecting a fire, natural gas leaks and to avoid eating rotten food. In the elderly, of whom there are estimates that greater than 50 percent of the population over the age of 65 has experienced smell loss, it can be difficult to get proper nutrition, as the sensation of flavor is closely tied to the sense of smell, and as flavor diminishes, appetite decreases in this population.

A Cochlear Implant for the Nose

Motivated by work conducted by research colleagues at Virginia Commonwealth University's School of Medicine, Mass. Eye and Ear physicians wanted to address the question of whether electrical stimulation of the olfactory bulb could induce the sense of smell in human subjects.

The findings described in the International Forum of Allergy & Rhinology report demonstrate this feasibility. In the report, the researchers describe endoscopic procedures to position electrodes in the sinus cavities of five patients with an intact ability to smell. Three patients described sensations of smell (including reports of onions, antiseptic, sour and fruity aromas) as a result of the stimulation.

This breakthrough in human patients opens the door for a "cochlear implant for the nose" to be developed -- though the study authors caution that the concept of an olfactory stimulator is more challenging than existing technologies. The most successful neuroprosthesic device in the world, cochlear implants have been on the market for more than three decades to electrically stimulate the auditory nerve to restore hearing in people with profound hearing loss.

"There's currently so little that we can do for these patients, and we hope to eventually be able to reestablish smell in people who don't have a sense of smell," Dr. Holbrook said. "Now we know that electrical impulses to the olfactory bulb can provide a sense of smell -- and that's encouraging."
-end-
In addition to Dr. Holbrook, authors on the International Forum of Allergy & Rhinology study include co-first author Sidharth V. Puram, MD, PhD, of Washington University School of Medicine, Reiner B. See, MD, and Aaron G. Tripp, of Massachusetts General Hospital, and Dinesh G. Nair, MD, of Brigham and Women's Hospital.

About Massachusetts Eye and Ear

Massachusetts Eye and Ear, founded in 1824, is an international center for treatment and research and a teaching hospital of Harvard Medical School. A member of Partners HealthCare, Mass. Eye and Ear specializes in ophthalmology (eye care) and otolaryngology-head and neck surgery (ear, nose and throat care). Mass. Eye and Ear clinicians provide care ranging from the routine to the very complex. Also home to the world's largest community of hearing and vision researchers, Mass. Eye and Ear has pioneered new treatments for blindness, deafness and diseases of the head and neck. Our scientists are driven by a mission to discover the basic biology underlying these conditions and to develop new treatments and cures. In the 2018-2019 "Best Hospitals Survey," U.S. News & World Report ranked Mass. Eye and Ear #4 in the nation for eye care and #6 for ear, nose and throat care. For more information about life-changing care and research at Mass. Eye and Ear, please visit our blog, Focus, and follow us on Twitter and Facebook.

Massachusetts Eye and Ear Infirmary

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.