Lobachevsky University scientists obtain a hexagonal modification of silicon

November 27, 2018

A team of scientists from Lobachevsky University (Nizhny Novgorod, Russia) has obtained a material with a new structure for applications in the new-generation optoelectronics and photonics. This material is one of the hexagonal modifications of silicon, which have been attracting researchers' attention of all over the world due to their better radiative properties compared to conventional cubic silicon, which is traditionally used in microelectronics.

The original technology for fabricating this material is based on implanting inert gas ions into a dielectric film on silicon in order to create mechanical stress. The relaxation of the stress during high-temperature annealing results in a phase transition in the silicon substrate at the interface with the dielectric layer. Thus, a near-surface layer with a new phase is formed in the initial silicon substrate. This layer can be used in optically active elements of integrated circuits.

According to one of the researchers, Head of the laboratory at the UNN Physics and Technology Research Institute Alexey Mikhaylov, the problem of searching for light-emitting materials compatible with traditional silicon technologies has become particularly pressing during the last decade due to the need to further increase the speed of integrated circuits. At present, this speed is limited by the transmission rate of electrical signals inside the integrated circuit through metal conductors.

"One of the most promising approaches to overcoming this limitation is the use of optoelectronics when optical signals are used instead of electrical ones. Unfortunately, so far there are no technologies for creating silicon-based integrated circuits, in which data transfer will be carried out at the speed of light signals," says Alexey Mikhaylov.

Nizhny Novgorod scientists have synthesized silicon layers that can act as an optically active medium. Experimenters, engineers and theorists working in close interaction have studied in detail the synthesis conditions, optical properties and the electronic structure of these layers.

"Within the framework of this work, for the first time in the world, a hexagonal modification of silicon of the 9R phase was obtained by means of ion implantation, and an associated emission band was detected in the infrared region of the spectrum. This result is especially important, since this band is in the field of transparency of silicon light guides," Alexey Mikhaylov comments.

Thus, the work of Nizhny Novgorod researchers can serve as a starting point for creating optoelectronic integrated circuits that will be manufactured using traditional technological operations and materials based on silicon.
-end-
The paper was published in the journal Applied Physics Letters.

Lobachevsky University

Related Silicon Articles from Brightsurf:

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

For solar boom, scrap silicon for this promising mineral
Cornell University engineers have found that photovoltaic wafers in solar panels with all-perovskite structures outperform photovoltaic cells made from state-of-the-art crystalline silicon, as well as perovskite-silicon tandem cells, which are stacked pancake-style cells that absorb light better.

Surprisingly strong and deformable silicon
Researchers at ETH have shown that tiny objects can be made from silicon that are much more deformable and stronger than previously thought.

A leap in using silicon for battery anodes
Scientists have come up with a novel way to use silicon as an energy storage ingredient.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

No storm in a teacup -- it's a cyclone on a silicon chip
University of Queensland researchers have combined quantum liquids and silicon-chip technology to study turbulence for the first time, opening the door to new navigation technologies and improved understanding of the turbulent dynamics of cyclones and other extreme weather.

Black silicon can help detect explosives
Scientists from Far Eastern Federal University (FEFU), Far Eastern Branch of the Russian Academy of Sciences, Swinburne University of Technology, and Melbourne Center for Nanofabrication developed an ultrasensitive detector based on black silicon.

2D antimony holds promise for post-silicon electronics
Researchers in the Cockrell School of Engineering are searching for alternative materials to silicon with semiconducting properties that could form the basis for an alternative chip.

Silicon technology boost with graphene and 2D materials
In a review published in Nature, ICFO researchers and collaborators report on the current state, challenges, opportunities of graphene and 2D material integration in Silicon technology.

Light and sound in silicon chips: The slower the better
Acoustics is a missing dimension in silicon chips because acoustics can complete specific tasks that are difficult to do with electronics and optics alone.

Read More: Silicon News and Silicon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.