Nav: Home

Newfound mechanism may yield ways to counter mistaken immune attack on body

November 27, 2018

A newfound genetic regulatory mechanism may shape the immune system's ability to fight viral infections, and play a key role in autoimmune diseases that occur when immune cells attack bodily tissues.

A new study led by researchers at NYU School of Medicine found that chemical changes to key spots on messenger RNA (mRNA) - the genetic material that passes on DNA instructions - control the production of a protein called interferon beta, which causes inflammation and activates immune cells to destroy viral particles.

Published online in Genes and Development on Nov. 27, the study shows how a pair of enzymes control production of interferon beta by determining whether or not a methyl group (one carbon and three hydrogens) is attached to an adenosine, one of the chemical "letters" in the mRNA code that guides the protein building process.

Methylation at a specific position on adenosine called N-6 by an enzyme called m6A methyltransferase is counter-balanced by the enzyme ALKBH5, which erases this methylation "mark." The researchers found that this writer/eraser pair, in partnership with other proteins, influenced how much interferon beta mRNA was produced in response to infection with human cytomegalovirus (HCMV), a common infection that begins by injecting its DNA into human cells.

The research team found that interfering with the enzyme that installs the methylation marks at N-6 resulted in greater interferon production, while shutting down the enzyme that removes methyl groups there reduced interferon production.

Importantly, say the authors, the proteins that edit RNA methylation marks were also found to control how much interferon beta was produced by human cells not infected by HMCV, when they sensed that human DNA had escaped from the cell nucleus or mitochondria where it belongs. This can happen when DNA is damaged by chemicals or radiation, or with changes to the structure of the nucleus or mitochondria as cells age.

As misplaced DNA is a known trigger of inflammation in autoimmune and inflammatory diseases, not to mention the aging process, the study mechanisms may represent a newfound treatment approach.

"Our study found that the cellular machinery that controls adenosine methylation on position N-6 plays a fundamental role shaping the immune response of human cells," says senior study author Ian Mohr, PhD, a professor in the Department of Microbiology at NYU Langone Health.

"Many diseases, such as lupus, are associated with excess interferon production related to the sensing of misplaced DNA, and our new findings suggest that interfering with enzymes that chemically modify mRNA may represent new ways to treat these conditions," says Mohr.

Experiments also showed that cellular writers and erasers of the methylation marks control the stability of interferon beta mRNA by interacting with other carefully regulated mechanisms that influence how much mRNA is built (biogenesis) and how quickly it is broken down (mRNA decay).
-end-
In addition to Dr. Mohr, study authors include Rosa Rubio, Daniel Depledge, Christopher Bianco, and Letitia Thompson, of NYU's Department of Microbiology. The work was supported by National Institutes of Health grants GM056927 and AI073898, and by Public Health Service Institutional Research Training Award AI07647.

NYU Langone Health / NYU School of Medicine

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".