Nav: Home

How antibiotics help spread resistance

November 27, 2018

Bacteria can become insensitive to antibiotics by picking up resistance genes from the environment. Unfortunately for patients, the stress response induced by antibiotics activates competence, the ability of cells to take up and integrate foreign DNA, in microorganisms. Microbiologists from the University of Groningen (UG) and the University of Lausanne now describe a new mechanism by which Streptococcus pneumoniae can become competent, and why biofilms may be important in this process. Their results were published in Cell Reports on November 27.

UG Ph.D. student Jelle Slager already described a mechanism by which bacteria can increase their ability to take up DNA from their surroundings, known as competence, four years ago. Subsequently, his colleague Arnau Domenech, a team member from the Veening lab at the University of Lausanne, who is the first author of the Cell Reports paper, screened a large number of clinically relevant substances for their ability to induce competence. Two drugs stood out: aztreonam and clavulanic acid, which are both used to fight infections. 'But when we looked closer, they didn't affect competence through a known mechanism', says Slager. 'So we investigated what was going on.'

Cell division

Competence is induced through the release of the so-called competence stimulating peptide (CSP). Cells secrete this peptide when they experience stress, for example when they are challenged with certain antibiotics. Only when the CSP concentration around them reaches a certain threshold do the cells become competent. 'This is a process called quorum sensing, it elicits a response once enough cells are affected.' As CSP is secreted into the environment, all cells become competent at more or less the same time.

However, something different happened with the Streptococcus pneumoniae cells used in this study. Slager: 'As these cells divide, they normally form mother-and-daughter pairs. But in response to these two drugs, they start forming longer chains, as the cell division mechanism is affected by the drugs. When cells in these chains secrete CSP, the local concentration is higher than when pairs of cells swim freely in the medium. This means the local threshold for quorum sensing will be reached sooner for the cells in these chains.

Biofilm

Slager: 'Through this mechanism, groups of cells become competent at different times. So rather than a synchronized 'pulse' of competence in all the cells, which we normally see, we now have competent cells present for an extended period of time.' An interesting aspect of this finding is that bacterial cells do not freely float in the body, as in these laboratory experiments, but are usually incorporated within a biofilm. Bacteria produce these biofilms by excreting sticky molecules, which provide them with protection against the immune system, for instance.

'In these biofilms, the cells are packed much more closely together, which means that competence is probably regulated by local quorum sensing, just like in our experiments', says Slager. 'In fact, as was recently discovered, a gene that stimulates biofilm formation is activated together with other competence-induced genes.' The first conclusion from this study is that standard laboratory experiments in which free-swimming bacteria are grown in flasks full of culture medium are different from the clinical situation, in which they would grow in a biofilm. Furthermore, drugs that, like aztreonam and clavulanic acid used in this study, lead to chain formation will thereby increase the spread of antibiotic resistance genes.

Implications

Will this have any clinical implications? Not directly, says Slager: 'This study primarily increases our fundamental knowledge about the spread of antibiotic resistance genes. And it tells us more about how cells communicate through quorum sensing. But maybe, in the long run, this knowledge could be used to disturb this communication and perhaps reduce the development of resistance.'
-end-
Reference: Domenech Pena, A. et al. (2018) Antibiotic-induced cell chaining triggers pneumococcal competence by reshaping quorum sensing to autocrine signaling. Cell Reports, 27 November 2018.

University of Groningen

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.