Largest study of CRISPR-Cas9 mutations creates prediction tool for gene editing

November 27, 2018

The largest study of CRISPR action to date has developed a method to predict the exact mutations CRISPR-Cas9 gene editing can introduce to a cell. Researchers at the Wellcome Sanger Institute edited 40,000 different pieces of DNA and analysed a thousand million resulting DNA sequences to reveal the effects of the gene editing and develop a machine learning predictive tool of the outcomes. This will assist researchers who are using CRISPR-Cas9 to research disease mechanisms and drug targets.

Reported today in Nature Biotechnology (27th November), the new resource will enable scientists to predict the best sequences to target to make CRISPR-Cas9 gene editing more reliable, and therefore cheaper and more efficient.

CRISPR-Cas9* is a gene editing technology that enables researchers to cut DNA at any position in the genome, to create mutations and switch off specific genes. This vital technology is used by scientists worldwide to study which genes are important for various conditions, from cancer to rare diseases. It is also now being trialled therapeutically to correct harmful mutations in people's genes.

A specific guide RNA binds to an exact sequence of target DNA, guiding the Cas9 'scissors' to cut the DNA at the right place. However, it is difficult to predict exactly what the final mutations will be, as further changes often take place when the cell repairs the break, rejoining the two cut ends of the DNA.

To study this, the researchers created over 40,000 pairs of different target DNA and guide RNA, and carried out CRISPR-Cas9 gene editing. By deep sequencing of each pair in different cells, they were able to analyse in detail how the DNA was cut and rejoined. They found that the repair depended on the exact sequence of DNA and guide and discovered that it was reproducible within the same sequence.

The researchers then used the huge quantity of sequence data to create a machine learning computational tool, which created general rules to determine the outcome of the repair. This programme - called FORECasT - enabled them to predict the repaired sequence, using the targeted DNA sequence alone.

Dr Luca Crepaldi, joint first author on the study from the Wellcome Sanger Institute, said: "We have carried out the largest, most comprehensive study on CRISPR-Cas9 action to date, and analysed more than a thousand million DNA sequences to allow us to study the process. We demonstrated that specific target sequences were repaired by the cell in the same way, proving that the action of the cell mechanisms is reproducible."

Dr Felicity Allen, joint first author from the Wellcome Sanger Institute, said: "The discovery of reproducible DNA repair after CRISPR-Cas9 editing, combined with the vast amount of sequence data we generated, meant that we could create a predictive tool using machine learning methods. Our resource can predict the exact mutations resulting from CRISPR-Cas9 gene editing, just from the sequence of the target DNA. It will save time and resources for future CRISPR-Cas9 applications, and is openly available for use by all researchers using gene editing to study health and disease."

Dr Leopold Parts, senior author on the paper from the Wellcome Sanger Institute, said: "CRISPR-Cas9 is an extremely important system for introducing mutations into DNA for research, and prospective therapeutic purposes. Our research allows scientists to understand its workings much better, and our transformational method enables people to predict the effects of each CRISPR-Cas9 edit in a cell. This allows better design of editing experiments, and may lead to future therapeutic applications."
-end-
Contact:

Dr Samantha Wynne,
Wellcome Sanger Institute, Wellcome Genome Campus,
Hinxton, Cambridge, CB10 1SA, UK
Phone:+44 (0)1223 496851
Email: press.office@sanger.ac.uk

Notes to editors:

*What is Crispr-Cas9?

CRISPR-Cas9 is a unique technology that enables geneticists and medical researchers to edit parts of the genome by removing, adding or altering sections of the DNA sequence. It is currently the simplest, most versatile and precise method of genetic manipulation

For more information see: https://www.yourgenome.org/facts/what-is-crispr-cas9

Prediction tool: FORECasT - Favoured Outcomes of Repair Events at Cas9 Targets. https://partslab.sanger.ac.uk/FORECasT

Selected websites:

Wellcome Sanger Institute

The Wellcome Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. To celebrate its 25th year in 2018, the Institute is sequencing 25 new genomes of species in the UK. Find out more at http://www.sanger.ac.uk or follow @sangerinstitute

Wellcome

Wellcome exists to improve health for everyone by helping great ideas to thrive. We're a global charitable foundation, both politically and financially independent. We support scientists and researchers, take on big problems, fuel imaginations and spark debate. http://www.wellcome.ac.uk

Wellcome Trust Sanger Institute

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.