Nav: Home

How changing labs revealed a chemical reaction key to cataract formation

November 27, 2018

Researchers working to understand the biochemistry of cataract formation have made a surprising finding: A protein that was long believed to be inert actually has an important chemical function that protects the lens of the eye from cataract formation.

The lens is made up of cells packed with structural proteins called crystallins. Crystallins within each lens cell form a protein-dense gel, and the gel's optical properties -- like its transparency and the way it refracts light -- help focus light onto the retina.

But when crystallin proteins clump together, they are no longer so transparent. If enough of the proteins go from their usual water-soluble, densely packed organization to clumpy aggregates, they begin to scatter incoming light, forming cloudy deposits known as cataracts.

According to Harvard postdoctoral fellow Eugene Serebryany, lead author on a recent study in the Journal of Biological Chemistry, for a long time researchers believed that crystallin proteins were chemically inert. That is, except for aggregating as an individual ages, the proteins were not believed to interact much with fellow proteins. Serebryany said, "This was the model: (crystallin's) real function is to remain monomeric and transparent and avoid aggregating for as long as possible."

Back when he was a graduate student at MIT, Serebryany used a mutant form of the lens protein gamma-crystallin to mimic UV damage to the protein. While studying how that mutation leads crystallin to aggregate into clumps, Serebryany found something surprising: The mutant was more likely to aggregate if wild-type, or undamaged, protein was also present.

Harvard professor Eugene Shakhnovich, who collaborated with Serebryany and his graduate adviser, Jonathan King, on the earlier studies, described the finding as "a fairly striking phenomenon" and explained: "If you had these damaged proteins in a test tube, they would not aggregate for a while. If you had the wild-type protein, it would not aggregate forever. But then, when you mix the two, you see rapid and precipitous aggregation."

In other words, the healthy version of a protein everyone had thought was inert was somehow causing a slightly damaged version to get much worse -- and fast.

When Serebryany graduated, Shakhnovich hired him to continue working to understand how a supposedly inactive protein could cause this effect. Serebryany said, "The first thing I had to do was basically try to get the experiments from my Ph.D. lab to work in this (new) lab."

"They're just two stops apart on the subway!" Shakhnovich joked.

But, for some reason, Serebryany had trouble replicating the results. "It's a different place, it's a different set of instruments, a slightly different set of procedures. You see where this is going," he said. "All of a sudden, experiments that were highly reproducible before were giving a lot of variability."

Indeed, in the Harvard lab sometimes the wild-type crystallin caused mutant crystallin to aggregate, and sometimes it didn't. The scientists were mystified.

Serebryany said, "Obviously, if there is suddenly variability, there is a hidden variable that we didn't see before." He set up a series of experiments trying to pinpoint that variable.

A close comparison of the molecular weights of the wild-type protein that caused the mutant to clump and the protein that didn't revealed a difference equivalent to the weight of two hydrogen atoms. This gave the researchers a hint that the redox state - whether two sulfur atoms within a protein molecule were bound to one another instead of to hydrogen atoms -- might make a difference.

"By carrying out isotopically resolved mass spectrometry experiments, we got more than we bargained for," Serebryany explained. "Not only did the aggregation-prone mutant acquire one internal disulfide bond per molecule during the aggregation reaction, but the aggregation-promoting wild-type protein lost its disulfide at the same time."

By mutating the sulfur-containing cysteine amino acid residues one by one to non-sulfur-containing residues, Serebryany found that two cysteine amino acids close together on the surface of gamma-d-crystallin acted as a kind of switch. When the two bound, making a structure called a disulfide bond, crystallin seemed to be able to push damaged fellow molecules toward aggregation. When the two cysteines were not bound, each instead took on a hydrogen atom, explaining the protein's tiny change in mass. Under that condition, wild-type crystallin was inert.

But how could one bond between amino acids on the surface of this protein make it drive other proteins to aggregate?

Using biophysical and biochemical techniques, the team found that although the disulfide bond forms easily, it also introduces strain into the protein's structure. This made each protein molecule likely to pass along the disulfide bond to a nearby molecule of the protein, receiving two protons in return. In this way the disulfide bond could be constantly passed around among crystallin protein molecules. The authors compared the process to passing a hot potato.

Given a whole population of healthy, undamaged crystallin proteins, this process could go on indefinitely. But if one protein was already a little damaged, the authors showed, it caught the hot potato with a different set of cysteines, which were less able to pass it on. This drove the damaged protein to clump up. The authors' previous work revealed that mutations mimicking damage caused by UV changed the stability of the protein, making it more floppy, and therefore more likely to acquire the conformation that exposes new cysteines that could catch the hot potato.

This helps us understand cataract formation. According to Shakhnovich, the team is working on peptide treatments that might keep the "hot potato" from reaching damaged proteins. Serebryany hopes such peptides "could actually soak up some of those disulfides and delay the time that it takes to form the more aggregation-prone species." That could lead to slower cataract formation for patients.
-end-
doi: 10.1074/jbc.RA118.004551

This study was funded by the National institutes of Health.

About the Journal of Biological Chemistry

JBC is a weekly peer-reviewed scientific journal that publishes research "motivated by biology, enabled by chemistry" across all areas of biochemistry and molecular biology. The read the latest research in JBC, visit http://www.jbc.org/.

About the American Society for Biochemistry & Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 11,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in government laboratories, at nonprofit research institutions and in industry. The Society publishes three journals: the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics. For more information about ASBMB, visit http://www.asbmb.org.

American Society for Biochemistry and Molecular Biology

Related Amino Acids Articles:

A natural amino acid could be a novel treatment for polyglutamine diseases
Researchers from Osaka University, National Center of Neurology and Psychiatry, and Niigata University identified the amino acid arginine as a potential disease-modifying drug for polyglutamine diseases, including familial spinocerebellar ataxia and Huntington disease.
Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.
New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.
Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.
Differentiating amino acids
Researchers develop the foundation for direct sequencing of individual proteins.
Simulating amino acid starvation may improve dengue vaccines
In a new paper in Science Signaling, researchers at the University of Hyderabad in India and the Cornell University College of Veterinary Medicine show that a plant-based compound called halofuginone improves the immune response to a potential vaccine against dengue virus.
CoP-electrocatalytic reduction of nitroarenes: a controllable way to azoxy-, azo- and amino-aromatic
The development of a green, efficient and highly controllable manner to azoxy-, azo- and amino-aromatics from nitro-reduction is extremely desirable both from academic and industrial points of view.
Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
More Amino Acids News and Amino Acids Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.