First measures of Earth's ionosphere found with the largest atmospheric radar in the Antarctic

November 27, 2019

There's chaos in the night sky, about 60 to 600 miles above Earth's surface. Called the ionosphere, this layer of Earth's atmosphere is blasted by solar radiation that breaks down the bonds of ions. Free electrons and heavy ions are left behind, constantly colliding.

This dance was previously measured through a method called incoherent scatter radar in the northern hemisphere, where researchers beam radio wave into the ionosphere. The electrons in the atmosphere scatter the radio wave "incoherently". The different ways they scatter tell researchers about the particles populating the layer.

Now, researchers have used radar in Antarctica to make the first measurements from the Antarctic region. They published their preliminary results on September 17, 2019 in the Journal of Atmospheric and Oceanic Technology.

"Incoherent scatter radar is currently the most powerful tool available to investigate the ionosphere because it covers a wide altitudinal range and it observes essential ionospheric parameters such as electron density, ion velocity, ion and electron temperatures, as well as ion compositions," said Taishi Hashimoto, assistant professor at the National Institute of Polar Research in Japan. While these radars are powerful, they're also rare due to their size and power demand.

Using the Program of the Antarctic Syowa Mesosphere-Stratosphere-Troposphere/Incoherent Scatter (PANSY) radar, the largest and fine-resolution atmospheric radar in the Antarctic, researchers performed the first incoherent scatter radar observations in the southern hemisphere in 2015. They also made the first 24-hour observation in 2017. While analyzing these observations, Hashimoto and the team expected to see significant differences between the southern measurements and the northern measurements, as Earth's lower atmosphere has a strong asymmetry between hemispheres.

"Clearly, observations in the southern hemisphere are crucial to revealing global features of both the atmosphere and the ionosphere," Hashimoto said.

It's not as simple as taking the measurements, however. Consider the radar as a pebble skipped across a pond's surface. The researchers want to learn how the pebble vertically displaces the water as it skips and eventually sinks. They aren't interested in the concentric ripples created at each skip, but they're so similar that it's difficult to discern which measurements are the ones needed.

These ripples are known as field-aligned irregularities, and Hashimoto's team applied a computer program that can recognize the different signals and suppresses the irregularities that could obscure the data.

"Our next step will be the simultaneous observation of ionosphere incoherent scatter and field-aligned irregularities, since the suppression and extraction are using the same principle from different aspects," Hashimoto said. "We are also planning to apply the same technique to obtain other types of plasma parameters, such as the drive velocity and ion temperature, leading to a better understanding of auroras."
Other authors include Akinori Saito of the Division of Earth and Planetary Sciences at Kyoto University, Koji Nishimura and Masaki Tsutsumi of the National Institute of Polar Research, Kaoru Sato of the Department of Earth and Planetary Science at the University of Tokyo and Toru Sato of the Department of Communications and Computer Engineering at Kyoto University.

About National Institute of Polar Research (NIPR)

The NIPR engages in comprehensive research via observation stations in Arctic and Antarctica. As a member of the Research Organization of Information and Systems (ROIS), the NIPR provides researchers throughout Japan with infrastructure support for Arctic and Antarctic observations, plans and implements Japan's Antarctic observation projects, and conducts Arctic researches of various scientific fields such as the atmosphere, ice sheets, the ecosystem, the upper atmosphere, the aurora and the Earth's magnetic field. In addition to the research projects, the NIPR also organizes the Japanese Antarctic Research Expedition and manages samples and data obtained during such expeditions and projects. As a core institution in researches of the polar regions, the NIPR also offers graduate students with a global perspective on originality through its doctoral program. For more information about the NIPR, please visit:

About the Research Organization of Information and Systems (ROIS)

ROIS is a parent organization of four national institutes (National Institute of Polar Research, National Institute of Informatics, the Institute of Statistical Mathematics and National Institute of Genetics) and the Joint Support-Center for Data Science Research. It is ROIS's mission to promote integrated, cutting-edge research that goes beyond the barriers of these institutions, in addition to facilitating their research activities, as members of inter-university research institutes.

Research Organization of Information and Systems

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to