Exploring drug repurposing to treat glioblastoma

November 27, 2019

MALT1 blockers have long been in clinical use for the treatment of blood cancers. A study suggests that these drugs could potentially also be developed as a treatment option for glioblastoma, the most common and lethal type of brain tumour.

Heidelberg, 27 November 2019 - For a long time, cancer research has largely focused on so-called oncogenes - genes that can cause cancer when mutated. While targeting these genes has led to the successful development of a number of valuable drugs, this approach is hampered by the fact that tumours often become resistant to these treatments.

A study conducted by Julie Gavard at the Université de Nantes, CNRS, INSERM, France, and her team, published today in The EMBO Journal, is now based on a different concept, termed non-oncogene addiction. During disease progression, cancer cells become strongly dependent on normal genes and cell functions to survive. These genes could thus serve as potential targets to attack tumour growth more efficiently. A gene called mucosa-associated lymphoid tissue l (MALT1), for example, is highly active in lymphoma, a type of blood cancer, and blocking MALT1 causes lymphoma cells to die. MALT1 blockers have been viewed as a promising new treatment for lymphomas.

The researchers now addressed the role of MALT1 in solid tumours, namely glioblastoma. Using data from The Cancer Genome Atlas, a molecular characterization of over 20,000 primary cancers, they revealed that MALT1 levels strongly correlate with patients' survival in brain cancer - patients with less MALT1 tend to live longer.

Gavard and colleagues then focused their attention on so-called glioblastoma stem cells, a self-renewing subpopulation of cells within the tumour that are likely responsible for cancer recurrence after treatment. They uncovered that targeting MALT1 with MALT1 blockers caused glioblastoma stem cells to undergo a rare form of cellular suicide termed lysosomal cell death in human cell culture experiments. Lysosomes are organelles within the cell that serve as the cells' digestive system. MALT1 keeps lysosomes low in cancer cells, which is crucial for their survival. Blocking MALT1 leads to an increase in lysosomes, which in turn impairs the cells' waste disposal system, eventually killing them. This points to the possibility of further exploring MALT1 inhibitors as potential treatment of glioblastoma.
-end-
Control of the Homeostasis of Endo-lysosomes by the Paracaspase MALT1 regulates Glioma Cell Survival

The EMBO Journal

Kathryn A. Jacobs, Gwennan André-Grégoire, Clément Maghe, An Thys, Ying Li, Elizabeth Harford-Wright1, Kilian Trillet, Tiphaine Douanne, Carolina Alves Nicolau, Jean-Sébastien Frénel, Nicolas Bidère, and Julie Gavard

DOI: 10.15252/embj.2019102030

Read the paper: http://www.embopress.org/doi/10.15252/embj.2019102030

EMBO

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.