Carbon intensity of power sector down in 2019

November 27, 2019

Engineers from Carnegie Mellon University's Scott Institute for Energy Innovation have compiled carbon emissions for the U.S. electric power sector for the second quarter (Q2) of 2019 as part of the CMU Power Sector Carbon Index. The index tracks carbon emissions and electricity generation over time and by energy source. Compared to Q2 of 2018, total U.S. power generation fell by 4% in Q2 of 2019, and the carbon intensity of the sector, measured in pounds of CO2 emissions per megawatt-hour, dropped by 9%.

"The U.S. electricity sector is continuing to get cleaner, and both carbon intensity and overall emissions are dropping," said Costa Samaras assistant professor of Civil and Environmental Engineering and Power Sector Carbon Index co-director.

Coal generation in 2019 Q2 is down 19% compared to just a year ago. After being the dominant source of power production in the U.S. for most of the electric age, coal has been on a steady decline for the past decade. In 2016, natural gas replaced coal as the largest source of electricity, a trend which has continued since. Burning natural gas produces only about half of the direct CO2 emissions that coal does, per unit of energy generated. In 2019 Q2, power generation from coal provided 21% of the nation's electricity, while natural gas provided 36%.

"We're in the middle of an energy transition right now, and the biggest part of that story in the U.S. is how swiftly coal has been declining over the past decade," said Samaras. "The decline of coal can be attributed to the rise of natural gas, the continued improvement of renewables, and energy efficiency efforts."

Renewables saw considerable growth over the past year. Compared to 2018 Q2, generation from solar increased 10% and generation from wind increased by 7%. "Wind and solar power are getting more and more competitive in electricity markets," said Samaras, pointing to the falling production costs as a significant driver of renewable energy. The large majority of renewable generation currently comes from utility-scale projects, as opposed to distributed generation like residential roof-top solar or small wind turbines. Together, wind and solar accounted for 11% of U.S. power generation in 2019 Q2. Hydropower generation provided 8%.

Despite notable recent nuclear plant closures such as Three Mile Island Nuclear Generating Station, nuclear power remained the largest zero-carbon source of electricity in the U.S., accounting for 20% of total generation.

The Power Sector Carbon Index, supported by Mitsubishi Hitachi Power Systems, was created to give policy makers, academics, industries, think-tanks, and the public up-to-date information on trends in the carbon intensity of the U.S. power sector. Though it relies on publicly available data, the Power Sector Index compiles information from disparate datasets and standardizes the calculation of carbon intensity, providing a much-needed service for anyone wanting to track the performance of the sector.

Compared to 2005, a year commonly used to benchmark progress in reducing emissions, the carbon intensity of the U.S. power sector is down more than 38% in 2019 Q2. Much of this progress comes simply from displacing coal with natural gas, though high-efficiency natural gas plants do account for a small portion of this reduction. Renewable sources, which Samaras expects will continue to add capacity to the power sector, account for most of the rest of this reduction in carbon intensity.

In 2017, for the first time in decades, transportation supplanted power generation as the economic sector with the highest greenhouse gas emissions. Tracking carbon in the power sector, according to Samaras, remains the fundamental barometer of progress in decarbonization due to the promise of electrification reducing emissions from other sectors, like transportation (with electric vehicles), buildings (with electric space heating), and some industrial activities. The Power Sector Carbon Index will continue to track these trends in a useful, easy to understand, and reliable way for anyone interested in U.S. carbon emissions.
-end-


College of Engineering, Carnegie Mellon University

Related Natural Gas Articles from Brightsurf:

Study reveals how to improve natural gas production in shale
A new hydrocarbon study contradicts conventional wisdom about how methane is trapped in rock, revealing a new strategy to more easily access the valuable energy resource.

A new material for separating CO2 from industrial waste gases, natural gas, or biogas
With the new material, developed at the University of Bayreuth, the greenhouse gas carbon dioxide (CO2) can be specifically separated from industrial waste gases, natural gas, or biogas, and thereby made available for recycling.

Study of natural gas flaring finds high risks to babies
Researchers from USC and UCLA have found that exposure to flaring -- the burning off of excess natural gas -- at oil and gas production sites is associated with 50% higher odds of preterm birth, compared with no exposure.

Sweet or sour natural gas
Natural gas that contains larger amounts of hydrogen sulfide (H(2)S) and carbon dioxide (CO(2)) is termed sour gas.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Effects of natural gas assessed in study of shale gas boom in Appalachian basin
A new study estimated the cumulative effects of the shale gas boom in the Appalachian basin in the early 2000s on air quality, climate change, and employment.

The uncertain role of natural gas in the transition to clean energy
A new MIT study examines the opposing roles of natural gas in the battle against climate change -- as a bridge toward a lower-emissions future, but also a contributor to greenhouse gas emissions.

Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses

Enhanced natural gas storage to help reduce global warming
Researchers have designed plastic-based materials that can store natural gas more effectively.

Natural gas storage research could combat global warming
To help combat global warming, a team led by Dr.

Read More: Natural Gas News and Natural Gas Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.