How do scars form? Fascia function as a repository of mobile scar tissue

November 27, 2019

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

In order to find out, they used an array of techniques including genetic lineage tracing, anatomical fate mapping, and genetic ablation, a method which in selected cells leads to apoptosis, cell death. This extinguished the fascia fibroblasts. It was discovered that no matrix was incorporated into the wounds and only abnormal and unhealthy scars with major disadvantages were formed.

In another approach the team placed a porous film beneath the skin to prevent fascia fibroblasts from migrating upwards. This, however, led to chronic open wounds. The researchers concluded that fascia contains a specialized prefabricated kit of sentry fibroblasts, embedded within a movable sealant, that preassemble together all the cell types and matrix components needed to heal wounds. They are assuming that guided homing of fascia initiates the hallmark response to external and internal injuries.

Scarring ensures survival

The new findings are important in context of ensuring survival: In mammals scarring injury induces a universal fibrotic tissue response that quickly patches wounds with scars - and thus prevents infection and bleeding to death. The hitherto tenet in wound repair was that scars form de novo by fibroblasts depositing extracellular matrix at sites of injury. With this study, the researchers could proof that scars originate from reservoirs of matrix jelly that are dragged into open wounds by sentry fibroblasts embedded in the fascia. These novel findings contradict current paradigms of how wounds repair.

New methods of scarless regenerative healing

The knowledge that fascia is the origin of scars and the finding of new mechanisms of wound repair provide a novel therapeutic space to curtail pathological fibrotic responses and induce scarless regenerative healing across a range of medical settings.

"The findings of our research give fascia tissue a new role for future science. This will shift the attention of the scientific community to not only to look at fibroblasts in the dermis but also at native cells in the fascia when researching on wound healing," says Rinkevich.

Donovan Correa-Gallegos, PhD student at Helmholtz Zentrum München and first co-author of the study, comments: "Our new findings challenge and reconfigure the traditional view of the body's matrix system of connective tissue. This is opening up a new biological concept that radiates to a variety of aspects of scar-related disease."
-end-
Further information

The project was funded by the Human Frontier Science Program Career Development Award, the German Research Foundation, Fritz-Thyssen-Stiftung (2016-01277) and a European Research Council Consolidator Grant. The first co-author Donovan Correa-Gallegos was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT) and Deutscher Akademischer Austauschdienst (DAAD).

Original publication

Correa-Gallegos, D. et al., 2019: Fascia is a repository of mobile scar tissue. Nature, DOI: 10.1038/s41586-019-1794-y

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes, allergies and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,500 staff members. It is a member of the Helmholtz Association, a community of 19 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Comprehensive Pneumology Center (CPC) is a joint research project of the Helmholtz Zentrum München, the Ludwig-Maximilians-Universität Clinic Complex and the Asklepios Fachkliniken München-Gauting. The CPC's objective is to conduct research on chronic lung diseases in order to develop new diagnosis and therapy strategies. The CPC maintains a focus on experimental pneumology with the investigation of cellular, molecular and immunological mechanisms involved in lung diseases. The CPC is a site of the Deutsches Zentrum für Lungenforschung (DZL). http://www.helmholtz-muenchen.de/ilbd

Helmholtz Zentrum München - German Research Center for Environmental Health

Related Fibroblasts Articles from Brightsurf:

Vanderbilt researchers make counterintuitive discoveries about immune-like characteristics of cells
Biologists reveal that tissue perturbations by chemotherapy agents promote stem cell expansion and that fibroblast cells exhibit unexpected, immune-like behavior.

Researchers discover a cell type responsible for cardiac repair after infarction
The researcher of the Faculty of Science of the UMA Adrián Ruiz-Villalba, who is also member of the Andalusian Center for Nanomedicine and Biotechnology (BIONAND) and the Biomedical Research Institute of Malaga (IBIMA), is the first author of an international study that has identified the heart cells in charge of repairing the damage caused to this organ after infarction.

Discovery of cells that heal cardiac damage after infarction
Researchers at Cima and the Clinica Universidad de Navarra (Spain) have led an international study identifying the cardiac cells responsible for repairing the damage to this organ after infarction.

A soft-hearted approach to healing
Researchers at the University of Tsukuba and Keio University have clarified the roles of matrix stiffness and mechanotransduction as well as the signaling pathways in the transformation of cardiac fibroblasts into contractile cardiomyocytes and show that soft substrates comparable to native myocardium improve the efficiency of this cardiac reprogramming.

Molecule secreted by cancer-associated fibroblasts promotes anticancer drug resistance
Joint research at Kumamoto University in Japan discovered a new mechanism for anticancer drug resistance in gastric cancer.

Mix and match: New 3D cell culture model replicates fibrotic elements of pancreatic cancer
Pancreatic cancer is a deadly cancer characterized by prominent fibrosis, which plays a crucial role in disease progression and therapeutic resistance.

Cancer cells cause inflammation to protect themselves from viruses
Researchers at the Francis Crick Institute have uncovered how cancer cells protect themselves from viruses that are harmful to tumors but not to healthy cells.

Rejuvenated fibroblasts can recover the ability to contract
A recent study from the Mechanobiology Institute at the National University of Singapore has shown that rejuvenated fibroblasts can recover their ability to self-contract.

Study reveals disparity between fibroblasts of different pancreatic diseases
Fibroblasts present in different pancreatic diseases are genetically distinct and their functions are 'programmed' by the unique environment of each disease, according to new research from the University of Liverpool (UK).

Interactions between cancer cells and fibroblasts promote metastasis
In order to colonize other organs and grow into metastases, tumor cells that detach from the parent tumor need to manipulate their new microenvironment and create a 'metastatic niche'.

Read More: Fibroblasts News and Fibroblasts Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.