A nice reactive ring to it: New synthetic pathways for diverse aromatic compounds

November 27, 2019

Researchers at the Tokyo Medical and Dental University (TMDU) discover a new method for synthesizing γ-aryl-β-ketoesters, an important class of molecules for the pharmaceutical industry

Tokyo, Japan - Researchers at the Tokyo Medical and Dental University (TMDU) have introduced a new synthetic process for producing an important family of carbon-based molecules known as γ-aryl-β-ketoesters. These molecules are used in the production of many vital pharmaceuticals, including alectinib, which is administered to treat non-small-cell lung cancer, and Januvia, a diabetes drug. This chemical approach may help in the preparation of a diverse range of their analogs and many other medication candidates more quickly.

Organic chemistry, which studies reactions involving carbon-based molecules, is central to the pharmaceutical industry. Certain reactions, such as the formation of multi-substituted aromatic compounds, are essential to the production of a variety of drugs. One important class of molecules that can be utilized as versatile intermediates are the γ-aryl-β-ketoesters. However, it was difficult to synthesize a variety of these critical molecules. In a study published in Organic Letters at October 24, researchers from Tokyo Medical and Dental University (TMDU) report a new reaction pathway to easily produce γ-aryl-β-ketoesters. To do this, they utilized aryne chemistry, which involves the removal of two substituents from a benzene ring, yielding a very reactive chemical species. "To successfully synthesize the γ-aryl-β-ketoesters, we decided to use a pathway that involves γ-aryl-β-ketoester-type arynes, because they are useful intermediates for creating multi-substituted aromatic derivatives," says first author Keisuke Uchida.

As a demonstration of the value of producing γ-aryl-β-ketoester using this novel method, the research team synthesized an analog of alectinib, which is an important inhibitor of certain lung cancers. As a complex molecule, the synthesis of various analogs by the conventional method takes considerable time and efforts, so the new approach that renders various γ-aryl-β-ketoesters easily available can improve the accessibility to them. This is true for many other organic compounds as well. "By virtue of the flexibility of aryne intermediates, our new synthetic approach may assist in the preparation of many important bioactive compounds, both for the pharmaceutical sector as well as for agrochemical sciences," senior author Takamitsu Hosoya says. The research group plans to expand the scope of their method to other molecules which may lead to faster and more cost-effective drug discovery in the future.
-end-
The article "Synthesis of Diverse γ-Aryl-β-ketoesters via Aryne Intermediates Generated by C-C Bond Cleavage" was published in Organic Letters at DOI: 10.1021/acs.orglett.9b03418

Tokyo Medical and Dental University

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.