New procedure will reduce the need for rare metals in chemical synthesis

November 27, 2020

Kanazawa, Japan - Pharmaceuticals, plastics, and many other chemical products have transformed human life. To prepare these products, chemists often use a catalyst--frequently based on rare metals--at various points in their syntheses. Although rare-metal catalysts are incredibly useful, their limited supply means that their use is unsustainable in the long term. Synthetic chemists need an alternative.

In a study recently published in Angewandte Chemie, researchers from Kanazawa University report such an alternative. Their research on a broad class of chemical reactions that are common in pharmaceutical and other syntheses will pave the way to a more sustainable chemical industry.

The 2010 Nobel Prize in Chemistry went to researchers who used catalysts based on palladium metal to perform a common type of chemical reaction known as cross-coupling. Such catalysts work very well for synthesizing what are known as congested quaternary carbon centers, which are common in molecules used in agriculture and medicine. However, for long-term sustainability, researchers need an alternative to rare-metal catalysts.

"We used benzylic organoborates to perform tertiary alkylative cross-coupling of aryl or alkyl electrophiles," says Hirohisa Ohmiya, corresponding author of the study. "Our procedure does not use rare elements and is a straightforward route to quaternary carbon centers."

The researchers' initial studies consisted of a tertiary benzylboronate that is first activated by a potassium alkoxide base to become a benzyl anion. This anion then undergoes a cross-coupling reaction with a secondary alkyl chloride electrophile.

"The reaction has broad scope," explains corresponding author Hirohisa Ohmiya. "For example, replacing the phenyl group of the boronate with various aromatic rings was successful, and the electrophile can be a wide range of rings and linear chains."

Subsequent studies replaced the secondary alkyl chloride with various aryl nitriles, aryl ethers, and aryl fluorides. Many of these reactions were successful, such as those with 4-cyanopyridine and 4-fluorophenylbenzene.

A comment in Nature on November 19 indicates that the COVID-19 pandemic has disrupted supply chains to various rare metals that are pertinent to the chemical industry. Hundreds of mines and factories have been closed, and many national borders are more restricted than before the pandemic. A long-term solution to supply chain disruptions is to develop synthetic protocols that don't use rare metals. The research described here is an important part of that effort and will help make chemical syntheses more sustainable for future generations.
-end-


Kanazawa University

Related Pharmaceutical Articles from Brightsurf:

GARDP partners with Japanese pharmaceutical in pursuit of new antibiotics
The Global Antibiotic Research and Development Partnership (GARDP) has today announced an agreement with Daiichi Sankyo for GARDP to access and screen the Daiichi Sankyo chemical library.

The integrated catalysts can simplify pharmaceutical manufacturing
Prof. In Su Lee and his research team from POSTECH developed catalytic platforms based on metal organic frameworks.

Study: Pharmaceutical companies marketing stimulants to physicians
Results of a new study show that a large number of physicians in the US may have received marketing payments from pharmaceutical companies that produce stimulant medications.

3D printing with applications in the pharmaceutical industry
This achievement will have applications in the pharmaceutical industry, such as in the preparation of biocompatible biosensors based in gold, which have already been shown to be effective in the detection of carcinogenic cells and tumour biomarkers.

Turning wood into pharmaceutical ingredients 
Production of hazardous waste during drug manufacturing is a serious concern for the pharmaceutical industry.

New pharmaceutical target reverses osteoporosis in mice
Biomedical engineers at Duke University have discovered that an adenosine receptor called A2B can be pharmaceutically activated to reverse bone degradation caused by osteoporosis in mouse models of the disease.

Active pharmaceutical ingredients can persist in the environment
A study finds trace levels of medicines in drinking water from private wells.

Drug development stakeholders call for improved pharmaceutical testing
Published in Drug Discovery Today, 'Advancing Nonclinical Innovation and Safety in Pharmaceutical Testing' identifies the necessary steps that will lead to safer and more effective medicines, guided by a greater focus on human-based in vitro and in silico methods, which allow scientists to observe human cells, tissues, and biological processes, and their interaction with potential medications.

A step ahead in pharmaceutical research
Researchers of the University of W├╝rzburg have developed a method that makes it possible to measure the activation of receptors in a very short time.

Are pharmaceutical marketing payments to physicians for opioids associated with prescribing?
Pharmaceutical industry marketing of opioid products to physicians through nonresearch payments, which can include speaking fees and meals, was associated with greater opioid prescribing.

Read More: Pharmaceutical News and Pharmaceutical Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.