Accurate and efficient 3D motion tracking using deep learning

November 27, 2020

A new sensing method has made tracking movement easier and more efficient. A research group from Tohoku University has captured dexterous 3D motion data from a flexible magnetic flux sensor array, using deep learning and a structure-aware temporal bilateral filter.

"We can now track complex motions with higher accuracy," said Yoshifumi Kitamura, co-author of the study.

Dexterous 3D motion data can be used for multiple purposes: biologists can use the data to record detailed movements of small animals in their living environments, scientists can track the flow of fluids, and researchers can track finger movements and objects being manipulated by users in virtual reality.

Currently, optical cameras are the most prominent method of tracking movements. Yet optical cameras struggle with accuracy and reliability. If a small animal burrows away or if fingers or objects obscure the view, the camera will fail to detect the motion.

Magnetic tracking technology is also used for dexterous motion. However, even state-of-the-art magnetic systems face limitations. The classic tracking method creates bias and magnetic sources have a dead-angle problem or bulky markers.

The research team invented their new method by applying a deep neural network and a novel structure-aware temporal bilateral filter on a new magnetic tracking principle. First, the neural networks learn the regression from the simulation flux values to the LC coils 3D configuration at any location and orientation.

The new filter further compensates the data to reconstruct smooth and accurate motion. Markers do not require batteries, so observation time can be maximized.

As a result, the new integrated system can track multiple LC coils at 100Hz speed at millimetre level accuracy. Tracking loss due to dead-angle can be reconstructed because of the system's self-learning.

"The application of our research is widespread. Hand motions can be tracked to make creating smooth animations easier, markers can be put into fluids to track its flow, and tracking can be placed on small animals," added Kitamura.
-end-


Tohoku University

Related Learning Articles from Brightsurf:

Learning the language of sugars
We're told not to eat too much sugar, but in reality, all of our cells are covered in sugar molecules called glycans.

When learning on your own is not enough
We make decisions based on not only our own learning experience, but also learning from others.

Learning more about particle collisions with machine learning
A team of Argonne scientists has devised a machine learning algorithm that calculates, with low computational time, how the ATLAS detector in the Large Hadron Collider would respond to the ten times more data expected with a planned upgrade in 2027.

Getting kids moving, and learning
Children are set to move more, improve their skills, and come up with their own creative tennis games with the launch of HomeCourtTennis, a new initiative to assist teachers and coaches with keeping kids active while at home.

How expectations influence learning
During learning, the brain is a prediction engine that continually makes theories about our environment and accurately registers whether an assumption is true or not.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.

School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.

Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.

Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.

Read More: Learning News and Learning Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.