Novel vaccine protects monkeys from Ebola infection

November 28, 2000

Few viruses are more feared than Ebola virus, the deadly microbe that periodically attacks African villages and kills up to 90 percent of those it infects. Although other viral diseases claim more lives each year, the ruthless efficiency and nightmarish symptoms of Ebola virus make a vaccine against this killer an important goal of scientists. Now, as described in the November 30 issue of Nature, a team of researchers led by scientists from the National Institutes of Health (NIH) has developed a novel vaccine that prevents Ebola virus infection in monkeys. All four vaccinated monkeys were completely protected from a lethal dose of the virus. This study describes the first primate model of immune protection against Ebola virus, a model that may allow scientists to rationally design a vaccine that prevents this dreaded disease in humans.

"Doctors have essentially been helpless against Ebola virus," says Gary Nabel, M.D., Ph.D., director of the Dale and Betty Bumpers Vaccine Research Center (VRC) at the NIH and a lead author of the study. "We have not known if immunity to the virus exists or what parts of the immune response are important. Our studies show that animals can launch an effective immune response against Ebola virus, and we can use knowledge of this response to design a vaccine that protects non-human primates from infection. Although much more work needs to be done, we hope this moves us closer to new vaccines and treatments for Ebola and other viruses."

Ebola virus kills quickly, giving the body little time to launch an effective immune response. Infected individuals suffer severe pain, high fever and extensive internal bleeding. Although the virus periodically strikes humans, scientists do not know where it resides in nature between outbreaks.

"Ebola is a difficult virus because currently available antiviral drugs have no proven effect on it and we do not know its natural reservoir, making environmental control impossible. A vaccine is therefore the best hope for protecting humans from infection, and this study makes some key advances toward realizing that goal," says Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID), which funds the VRC along with the National Cancer Institute (NCI). NIAID, NCI and the NIH Office of AIDS Research spearhead the Center.

Dr. Nabel and colleagues had previously tested genetic Ebola vaccines-strands of DNA containing genes that encode Ebola virus proteins-for their ability to induce immune responses in rodents and to protect against disease. Unlike traditional vaccines, typically made from viral proteins, DNA vaccines more closely mimic virus infection because they enter a cell and use that cell's machinery to manufacture new viral proteins. Researchers believe this strategy might better trick the immune system into thinking a real virus infection has occurred.

Previously, Dr. Nabel's laboratory and a second research team independently showed a DNA vaccine could protect mice and guinea pigs from a specially adapted Ebola virus strain lethal to rodents. An effective human vaccine, however, must protect against three known fatal Ebola virus strains- Zaire, Sudan and Ivory Coast. Ebola Zaire is the form of virus associated with the most human deaths.

To ensure that a multi-strain vaccine would not weaken the immune response to the Zaire strain, a team of scientists led by VRC research fellow Nancy Sullivan, Ph.D., and Dr. Nabel combined genes encoding surface proteins from the Sudan, Zaire and Ivory Coast Ebola viruses. Working with researchers from the Centers for Disease Control and Prevention's high-containment or biosafety level 4 facility, Dr. Nabel's team compared this vaccine to the one tested previously in rodents. The new vaccine produced an immune response equally powerful to that of the original vaccine in protecting guinea pigs from the Zaire strain.

The scientists then turned to boosting the anti-Ebola virus immune response by using a weakened form of a different virus, adenovirus, to make an Ebola virus protein from the Zaire strain. Adenoviruses typically cause respiratory diseases, but the researchers used a modified form that can enter cells without reproducing or causing disease. Such viruses have been used in other studies to boost immune responses in mice. Dr. Nabel's team attached the Ebola Zaire virus surface protein gene to the DNA of the weakened adenovirus, and tested this new booster vaccine in mice. The vaccine produced a more vigorous immune response than that observed with the multi-strain DNA vaccine, and it increased the amount of antibodies and T cells directed against the Ebola virus protein.

Armed with this promising new vaccine, the researchers tested a novel prime-boost immunization strategy on eight monkeys. Four monkeys received the three-strain Ebola virus DNA vaccine and then were injected with the Ebola-adenovirus booster. The other four monkeys received placebo immunizations. All four vaccinated monkeys launched strong anti-Ebola immune responses and survived a subsequent exposure to lethal doses of Ebola Zaire virus. Three of these monkeys showed no sign of viral infection, whereas a slight, temporary increase in Ebola virus in the blood of one of the vaccinated monkeys disappeared after one week. More than six months after infection, the four monkeys remained symptom-free with no detectable virus in the blood.

The researchers are continuing their efforts. "We of course want to test the multivalent vaccine for effectiveness against all three strains of Ebola virus," says Dr. Sullivan, "but we also need to look more closely at the immune response induced by these vaccines so we can nail down what is needed for protection." By studying the mechanism of protection induced by the vaccine, they can determine what combination of antibodies, helper T cells and killer T cells defend the monkeys against infection. They then hope to use this information to rationally design new vaccines and antiviral treatments for humans.

NIAID is a component of the National Institutes of Health (NIH). NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, tuberculosis, malaria, autoimmune disorders, asthma and allergies.
**Note to Radio Editors: An audio report about the study will be available after 2 p.m. Eastern Time, November 29, 2000, from the NIH Radio News Service by calling 1-800-MED-DIAL (1-800-633-3425).

**Note to Print/Video Editors: A photograph of the Ebola virus is available from the CDC Web site at For video editors, a B-roll has been prepared to accompany this press release and will be available through the NIAID Office of Communications and Public Liaison on Tuesday, November 28.

Reference: NJ Sullivan, et al. Development of a protective vaccine for Ebola virus infection in primates. Nature 408:605-09 (2000).

Press releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at

NIH/National Institute of Allergy and Infectious Diseases

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to