Ancient South African soils point to early terrestrial life

November 28, 2000

University Park, Pa. -- Remnants of organic matter in ancient soil more than 2.6 billion years old may be the earliest known evidence for terrestrial life, according to a team of Penn State astrobiologists.

"Our work shows that the organic matter in this soil very probably represents remnants of microbial mats that developed on the soil surface between 2.6 and 2.7 billion years ago," says Dr. Hiroshi Ohmoto, professor of geochemistry and director of The Penn State Astrobiology Center. "This places the development of terrestrial biomass more than 1.4 billion years earlier than previously reported." Evidence that microorganisms flourished in the oceans since at least 3.8 billion years ago exists, but when these microorganisms colonized on land is not clear. The oldest undisputed remnants of terrestrial biomass have been 1.2 billion-year-old microfossils found in Arizona.

Examining samples taken from Mpumalanga Province, South Africa, using a variety of geochemical methods, the researchers report in this week's issue of Nature, that a paleosol dating to between 2.6 and 2.7 billion years ago contains organic carbon that was neither created by high temperature fluids nor is the remnant of later petroleum migration, but is in-situ biological in origin.

A paleosol is a layer of ancient soil, in this case buried and preserved where it formed. Because the 55-foot thick layer of soil found at Schagen is located between a layer of 2.7 billion-year-old serpentine and a 2.6 billion-year-old quartzite bed, the researchers can date the soil to between 2.6 and 2.7 billion years ago. Showing that the carbon in the soil is biological in origin and that it accumulated during soil formation is much more difficult.

The researchers, who include Ohmoto; Yumiko Watanabe, Ph.D. candidate at Penn State and at Tohoku University, Sendai, Japan; and Jacques E.J. Martini, Geological Survey of South Africa, evaluated three possibilities for the formation of reduced carbon in the soil.

The first of these was that the carbon was graphite crystals created when the underlying serpentine formed under high temperatures. The graphite then was concentrated during the soil formation. "The crystallinity and hydrogen/carbon rations of the organic matter suggest it is not of igneous or hydrothermal origin," says Ohmoto, a faculty member in Penn State's College of Earth and Mineral Sciences.

The second possible origin of reduced carbon is liquid hydrocarbons introduced after the soil formation ended. Materials introduced after formation should show up along fractures in the rocks. "The organic matter is almost always concentrated in clay-rich parts of the rocks paralleling the ancient surface," says Ohmoto. "Organic matter and clays are so intimately mixed together that the size and morphology of individual 'grains' of organic mater can only be recognized under electron microscopes."

The Penn State researchers conclude that the reduced carbon was not produced by high heat and then incorporated into the soil as it formed nor was it deposited after the soil formed by migrating petroleum. The third possibility then is that the organic carbon represents remnants of biomats developed on the soil surface. The researchers found that the organic-rich clays in the upper portion of the paleosol appeared as seams between fine-grained and coarse-grained layers of quartz. "These features suggest that the organic matter in the uppermost soil zone is an indigenous remnant of microbial mats that developed on the surface of clay-rich soil during the rainy season," says Ohmoto. "The mats were blanketed by aerosol deposits laid down during the dry season."

In the lower portion of the paleosol, things are less clear because the effects of seeping water and the dissolution and precipitation of materials suggest some decomposition. While identifying the organism in the microbial mats is difficult, the researchers are certain that they were not photosynthetic sulfur bacteria as there is no sulfur present. Photosynthetic blue-green algae, however, are a likely possibility for the mat formation because the ancient remnants have nearly identical carbon isotope ratios as modern blue-green algal mats in fresh water.

The researchers are also certain that the mats formed on land, not in the oceans, because the carbon isotope values for the carbon in the paleosol are distinctly different from the organic carbon found in marine sedimentary rock.

"Although terrestrial bacterial communities were predicted by previous researchers, this is, to our knowledge, the first study presenting several lines of evidence for an extensive development of microbial mats on soil surfaces in the Archaean," says Ohmoto. "Our finding may then imply that an ozone shield developed before 2.6 billion years ago.

"The ozone shield would have protected land-based biological forms from the effects of cosmic radiation. Development of the ozone shield requires an oxygen-rich atmosphere. Our finding of ancient biomats on land is an important addition to a growing line of evidence suggesting that the rise of atmopsheric oxygen took place more than 2.6 billion years ago."
Penn State is a member of and receives research funding for this and other efforts, through the NASA Astrobiology Institute, a research consortium involving academic, non-profit and NASA centers. NASA's Ames Research Center is the agency's lead center for astrobiology, the study of the origin, evolution, dissemination and future of life in the universe.

EDITOR: Dr. Ohmoto is at (814) 865-4074 or at by email.

Penn State

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to