Superconductors that work at room temperature

November 28, 2001

TINY tubes of carbon may conduct electricity without any resistance, at temperatures stretching up past the boiling point of water. The tubes would be the first superconductors to work at room temperature.

Guo-meng Zhao and Yong Sheng Wang of the University of Houston in Texas found subtle signs of superconductivity. It wasn't zero resistance, but it's the closest anyone's got so far. "I think all the experimental results are consistent with superconductivity," Zhao says. "But I cannot rule out other explanations."

At the moment no superconductor will work above about 130 kelvin (-143 ¡C). But if a material could carry current with no resistance at room temperature, no energy would be lost as heat, meaning faster, lower-power electronics. And electricity could be carried long distances with 100 per cent efficiency.

Zhao and Wang studied the effects of magnetic fields on hollow fibres of carbon known as "multiwall carbon nanotubes". Each nanotube is typically a millionth of a metre long, several billionths of a metre in diameter and with walls a few atoms thick. The nanotubes cling together in oblong bundles about a millimetre in length.

The researchers did not see zero resistance in their bundles. They think this is because the connections between the tiny tubes never become superconducting. But they did see more subtle signs of superconductivity within the tubes themselves.

For example, when the researchers put a magnetic field across a bundle at temperatures up to 400 kelvin (127 ¡C), the bundle generated its own weak, opposing magnetic field. Such a reaction can be a sign of superconductivity. And when the team cooled the bundles from even higher temperatures then turned the external field off, they stayed magnetised. A current running around within the tubes could generate this lingering field if there wasn't any resistance to make it fade away.

While each effect could have a more prosaic explanation, they varied in similar ways as the temperature of the bundles changed. The correlation suggests superconductivity was responsible, Zhao and Wang argue in a paper to be published in Philosophical Magazine B. However, their argument doesn't convince Paul Grant, a physicist with the Electric Power Research Institute in Palo Alto, California. "Generally, superconductivity is such a dominating effect that when it occurs it just shouts out at you," Grant says. "It doesn't appear in these indirect ways."

Superconductivity theories do not forbid the phenomenon at very high temperatures, says Sasha Alexandrov, a theoretical physicist at Britain's Loughborough University. A material becomes superconducting when its electrons pair up. Normally such negatively charged particles would repel each other, but in a positively charged crystal structure, vibrations called phonons help them get together. In carbon nanotubes, the frequency of these vibrations is very high, which, in theory at least, means superconductivity at higher temperatures. "The results on the magnetic response are very intriguing, and favour the explanation they present," Alexandrov says. "It's certainly possible," agrees David Caplin, head of the Centre for High Temperature Superconductivity at Imperial College, London.

To decide whether or not the nanotubes really are superconductors, you need to measure the resistance through a single tube, Alexandrov says. "To be convinced, I'd like to see zero resistance."
-end-
Author: Adrian Cho More at: www.arxiv.org/abs/cond-mat/0111268

New Scientist issue: 1st December 2001

PLEASE MENTION NEW SCIENTIST AS THE SOURCE OF THIS STORY AND, IF PUBLISHING ONLINE, PLEASE CARRY A HYPERLINK TO: www.newscientist.com

New Scientist

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.