Columbia University researchers find key to the formation of new seafloor spreading centers

November 28, 2002

The site of extensive volcanic activity and sea-floor spreading, the Galapagos Rise in the eastern equatorial Pacific Ocean has yielded groundbreaking research results for the field of plate tectonics. Jacqueline Floyd and her colleagues, all of Columbia University's Lamont-Doherty Earth Observatory, are introducing a new model for the process of mid-ocean ridge propagation (lengthening), which is responsible for seafloor spreading and the consequent formation of ocean basins. Their study is featured as this week's cover story in the scientific journal Science.

Using recently recorded earthquake data that had not been available to previous models, the researchers show that mid-ocean ridge propagation is preceded by a complex breakdown process and earthquake activity that allows the ridge to lengthen stably in the brittle crust of the ocean's lithosphere, independent of the enormous resisting forces proposed by previous models.

"Previous investigators idealized mid-ocean ridges as perfect cracks in the oceanic crust, but our results show that the seismicity and crustal structure around the ridge tip is more complex. This has critical implications for our ideas of how the crust rifts apart to form a new seafloor spreading center," said Floyd. "The hydroacoustic seismicity data were critical for making these observations since the magnitudes of the earthquakes in Hess Deep lie below the magnitude threshold of global teleseismic networks. The earthquake data show a concentration of earthquake activity at the tip of the Galapagos rise in Hess Deep that we almost immediately recognized as being similar to acoustic emission patterns observed at the tips of propagating cracks in the laboratory. The strikingly similar seismicity and faulting patterns allowed us to apply principles from fracture mechanics studies in the lab, at scales of centimeters or less, to the problem of mid-ocean ridge propagation in the oceanic crust, at the scales of 10s of kilometers and more."

By examining earthquake data and the topography of the Hess Deep rift, an enormous underwater canyon at the western tip of the Galapagos Rise, the researchers found that what makes an underwater ridge lengthen is more complex in comparison to previous theories. The researchers observe that small-magnitude earthquakes and micro cracking in a region called the process zone precede propagation, and are followed by nucleation of the rift axis and upwelling of magma, which leads to seafloor spreading.

Computer modeling of the stress field at the Hess Deep rift supports the authors' interpretation of the seismicity data as resulting from rifting at the tip of a crack-like mid-ocean ridge in the oceanic plate.

Hess Deep was an excellent place to test prevailing models of ridge propagation because it is a relatively simple structure, its tectonic history is well understood, it has minimal sediment cover, and a long-term record of seismicity was available.

This new understanding of mid-ocean ridge propagation in Hess Deep can now be applied to more complex rift settings in both the oceans and the continents.
-end-
To receive an abstract of this paper, please contact Science magazine at 202-326-6440.

Jacqueline Floyd is a Faculty Fellow and Ph.D. Candidate with the Department of Earth and Environmental Sciences and the Lamont-Doherty Earth Observatory, one of the world's leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists continue to provide the basic knowledge of Earth systems that must inform the future health and habitability of our planet. Her co-authors on the study are Maya Tolstoy, John Mutter, and Christopher Scholz, all of Columbia's Lamont-Doherty Earth Observatory.

The Lamont-Doherty Earth Observatory is a research unit of the Earth Institute at Columbia University, the world's pioneer academic center for mobilizing the sciences and public policy in pursuit of a sustainable future, especially for the world's poor. Its director is international economist Jeffrey D. Sachs. More than 800 scientists with strength in Earth science, ecology, health, social science or engineering are working together to reduce poverty, hunger, disease and environmental degradation. The Institute brings their creative knowledge to bear through teaching, research and outreach in dozens of countries around the world. In all it does, the Earth Institute remains mindful of the staggering disparities between rich and poor nations and the tremendous impact that global-scale problems - from the AIDS pandemic to climate change to extreme poverty in much of the developing world - will have on all nations. For more information, visit www.earth.columbia.edu.

The Earth Institute at Columbia University

Related Plate Tectonics Articles from Brightsurf:

Lost and found: UH geologists 'resurrect' missing tectonic plate
A team of geologists at the University of Houston College of Natural Sciences and Mathematics believes they have found the lost plate known as Resurrection in northern Canada by using existing mantle tomography images.

Plate tectonics goes global
A research team led by Dr. WAN Bo from the Institute of Geology and Geophysics (IGG) of the Chinese Academy of Sciences has revealed that plate tectonics went global 2 billion years ago.

Remixed mantle suggests early start of plate tectonics
New Curtin University research on the remixing of Earth's stratified deep interior suggests that global plate tectonic processes, which played a pivotal role in the existence of life on Earth, started to operate at least 3.2 billion years ago.

Why the Victoria Plate in Africa rotates
The East African Rift System is a newly forming plate tectonic boundary at which the African continent is being separated into several plates.

Evidence for plate tectonics on earth prior to 3.2 billion years ago
New research indicates that plate tectonics may have been well underway on Earth more than 3.2 billion years ago, adding a new dimension to an ongoing debate about exactly when plate tectonics began influencing the early evolution of the planet.

Upper-plate earthquakes caused uplift along New Zealand's Northern Hikurangi Margin
Earthquakes along a complex series of faults in the upper plate of New Zealand's northern Hikurangi Subduction Margin were responsible for coastal uplift in the region, according to a new evaluation of local marine terraces.

Breathing? Thank volcanoes, tectonics and bacteria
A Rice University study in Nature Geoscience suggests Earth's first burst of oxygen was added by a spate of volcanic eruptions brought about by tectonics.

What drives plate tectonics?
Scientists found ''switches'' between continental rupture, continental collision, and oceanic subduction initiation in the Tethyan evolution after a reappraisal of geological records from the surface and new global-scale geophysical images at depth.

Plate tectonics may have driven 'Cambrian Explosion, study shows
The quest to discover what drove one of the most important evolutionary events in the history of life on Earth has taken a new, fascinating twist.

Zipingpu Reservoir reveals climate-tectonics interplay around 2008 Wenchuan earthquake
A new study led by Prof. JIN Zhangdong from the Institute of Earth Environment (IEE) of the Chinese Academy of Sciences provided a new insight on the interplay between climate and tectonics from a sediment record in the Zipingpu Reservoir around the 2008 Wenchuan earthquake.

Read More: Plate Tectonics News and Plate Tectonics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.