Computer program helps doctors diagnose lung cancer

November 28, 2004

ANN ARBOR, Mich. -- Not all masses are cancer. When a person undergoes a scan to identify a lump or nodule, the radiologist looks at the texture, the borders and the shape to determine if it is malignant or just a benign growth.

Researchers at the University of Michigan Comprehensive Cancer Center are developing computer-aided diagnosis (CAD) methods to make that assessment easier. A computer program reads the same scans the radiologist views, and the combined judgment of the computer and radiologist helps detect more cancers, the researchers found.

"Our system is designed to help the radiologist. From our experiences in evaluating CAD for breast cancer, using computer aids significantly improves the performance of the radiologist in predicting malignancies of the masses. Radiologists with computers are able to detect more cancers than radiologists by themselves. We expect that CAD for lung cancer can achieve similar results," says Lubomir Hadjiyski, Ph.D., research assistant professor of Radiology at the U-M Medical School. Hadjiyski will present results of the study Sunday, Nov. 28, at the Radiological Society of North America's annual meeting in Chicago.

In the study, researchers looked at 41 CT scans that showed nodules in the lungs. Current scans and previous scans were fed through a computer program specially designed by the U-M researchers to evaluate the size, texture, density and change over time of the nodules. Based on that information, the computer determines how likely the nodule is cancerous.

Previous attempts at computer-aided diagnosis have the computer analyze only the current scan. By allowing the computer to read and compare a series of scans, it gets a complete picture and has the same information the radiologist has.

A CAD system is designed to provide a second opinion to radiologists. The computer analyzes the images with computer-vision techniques specially designed for a given type of cancer or disease. At the same time, the radiologist examines the images and evaluates the likelihood of cancer. The radiologist then compares the two results and makes a final decision.

In many cases, the computer and the radiologist might come to the same conclusion. In other cases, though, the computer may determine a low rate of malignancy for a patient where the radiologist is on the fence. This could tip the scale against performing a biopsy. And if there's a big difference between the radiologist's judgment and the computer's, the patient can be called back for a second look.

"The radiologist is not perfect and the computer is not perfect, but working together they detect more cancers," says Hadjiyski says.

Hadjiyski and his team have developed a similar program to detect breast cancer, and initial testing there is promising. The computer program for both lung and breast cancer needs FDA approval before it can be offered clinically. Hadjiyski stresses that computers will never replace the radiologist entirely but that the technology is meant to complement the radiologist's judgment.

The one flaw with the computer-aided system is it may return false positive results, identifying masses as cancerous when they are benign. Hadjiyski notes, though, that overall the system detects more cancers. As the researchers fine-tune the technology, they hope to see fewer false positives, and may actually help radiologists identify benign lesions and reduce the number of people undergoing biopsies. Researchers hope next to develop a system that will both detect a lesion and identify it as malignant or benign.

In addition to Hadjiyski, researchers were Berkman Sahiner, Ph.D., associate professor of Radiology; Heang-Ping Chan, Ph.D., professor of Radiology; Naama Bogot, M.D., clinical lecturer in Radiology; Philip Cascade, M.D., professor of Cardiology and Radiology; and Ella Kazerooni, M.D., professor of Radiology.
-end-


University of Michigan Health System

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.