Microcapsules like it hot and salty

November 28, 2006

Scientists at the Max Planck Institute of Colloids and Interfaces have presented a new method with which to precisely control the permeability of microcapsules using the salt content and the temperature of the solution. In order to accomplish this, the researchers developed a theoretical model which exactly describes the processes in the polymer shell of the capsules. This means that is possible to predict, without any experimental investigations, how the properties of the hollow spheres will change if the temperature and salt content are altered (Physical Review Letters, November 3, 2006). This opens up new possibilities for using the capsules to transport active substances in the body, as components of self-repairing car paints or as microsensors and micropumps.

Ideally, medicines should only go to the sick regions of the body to prevent side-effects and to be as effective as possible. This requires intelligent transport systems which initially enclose the active substances and then release them at the location where they are to be effective given the presence of certain conditions. Scientists at the Max Planck Institute of Colloids and Interfaces in Potsdam are working on a microtransport system which meets these requirements exactly. Polymer capsules of just a few micrometres, i.e. thousandths of a millimetre, transport drugs through the organism. The walls of the microcapsules are constructed from alternate layers of positively and negatively charged polymer molecules so that molecules with very different properties can be used to make the capsules.

To maximize the usefulness of the capsules, it is important that the permeability of the capsule wall can be adjusted precisely. When the microcontainer is filled, the wall must initially allow the active substance through to the inside. Then the capsule shell must be sealed to enclose the contents so that they can be released at the location where they are to take effect. The scientists in Potsdam have now found out that the density and the thickness of the capsule wall, and hence its permeability, can be controlled with changes to the temperature and salt content.

If the temperature is only slightly raised the hollow spheres swell up or shrink and at the same time the wall becomes thinner or thicker. This depends on the composition and the electrical charge of the polymer shell: However, it is not just in the laboratory that the size of the capsule can be adjusted precisely. The scientists also have a theoretical understanding of the processes in the capsule wall, which means that they can predict the diameter of the hollow spheres under any given circumstances without an experiment. The model they have developed contains the competition between two forces: the polymer/water surface tension, which attempts to make the capsule and its surface smaller on the one hand, and the electrostatic repelling force between like charges in the polymer shell which makes the capsule swell on the other. "Depending on the strength of the two competitors, the exact size of the capsule can be calculated in advance for a very specific salt concentration and temperature," explained Maarten Biesheuvel, another member of the team of researchers.

The theoretical model also predicts that it should be possible, by way of skilful adjustment of the conditions, to shrink initially swollen capsules and vice versa. This prediction was also confirmed in experiments.

This continuous switching between the two states of quite different capsule sizes expands the range of possible uses for the Potsdam microcapsules enormously. As well as being used as medicine transporters, conceivable applications include using the capsules as a component of car paint which releases a corrosion protection agent when damaged, thereby stopping the damaged section from becoming larger. As microsensors they could supply information about the concentration of certain molecules, such as glucose or calcium ions in cells or also work as micropumps.
-end-
Related links:

[1] Max Planck press release "Microcapsules Open in Tumour Cells" August 23rd, 2006
http://goto.mpg.de/mpg/news/20060823/

Original work:

Karen Köhler, P. Maarten Biesheuvel, Richard Weinkamer, Helmuth Möhwald and Gleb B. Sukhorukov
Salt-induced swelling-to-shrinking transition in polyelectrolyte multilayer microcapsules
Physical Review Letters, 3 November 2006

Max-Planck-Gesellschaft

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.