A molecular map for aging in mice

November 28, 2007

Researchers at the National Institute of Aging and Stanford University have used gene arrays to identify genes whose activity changes with age in 16 different mouse tissues. The study, published November 30 in PLoS Genetics, uses a newly available database called AGEMAP to document the process of aging in mice at the molecular level. The work describes how aging affects different tissues in mice, and ultimately could help explain why lifespan is limited to just two years in mice.

As an organism ages, most tissues change their structure (for example, muscle tissues become weaker and have slow twitch rather than fast twitch fibers), and all tissues are subject to cellular damage that accumulates with age. Both changes in tissues and cellular damage lead to changes in gene expression, and thus probing which genes change expression in old age can lead to insights about the process of aging itself.

Previous studies have studied gene expression changes during aging in just one tissue. The new work stands out because it is much larger and more complete, including aging data for 16 different tissues and containing over 5.5 million expression measurements.

One noteworthy result is that some tissues (such as the thymus, eyes and lung) show large changes in which genes are active in old age whereas other tissues (such as liver and cerebrum) show little or none, suggesting that different tissues may degenerate to different degrees in old mice.

Another insight is that there are three distinct patterns of aging, and that tissues can be grouped according to which aging pathway they take. This result indicates that there are three different clocks for aging that may or may not change synchronously, and that an old animal may be a mixture of tissues affected by each of the different aging clocks.

Finally, the report compares aging in mice to aging in humans. Several aging pathways were found to be the same, and these could be interesting because they are relevant to human aging and can also be scientifically studied in mice.
-end-
CITATION: Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A, et al. (2007) AGEMAP: A gene expression database for aging in mice. PLoS Genet 3(11): e201. doi:10.1371/journal.pgen.0030201

CONTACT:

Dr. Stuart Kim
Stanford University Medical Center
+1-650-725-7612
kim@cmgm.stanford.edu




Disclaimer

This press release refers to an upcoming article in PLoS Genetics. The release is provided by the article authors. Any opinions expressed in this release or article are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

About PLoS Genetics

PLoS Genetics (http://www.plosgenetics.org) reflects the full breadth and interdisciplinary nature of genetics and genomics research by publishing outstanding original contributions in all areas of biology. All works published in PLoS Genetics are open access. Everything is immediately and freely available online throughout the world subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org. PLEASE MENTION THE OPEN-ACCESS JOURNAL PLoS GENETICS (www.plosgenetics.org) AS THE SOURCE FOR THIS ARTICLE AND PROVIDE A LINK TO THE FREELY AVAILABLE TEXT. THANK YOU.

PLoS Genetics is an open-access, peer-reviewed journal published weekly by the Public Library of Science (PLoS).

PLOS

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.