Massive Canadian oilfield could be exploited using new UK system

November 28, 2007

A new method developed in Britain over the past 17 years for extracting oil is now at the forefront of plans to exploit a massive heavy oilfield in Canada.

Duvernay Petroleum is to use the revolutionary Toe-to-Heel Air Injection (THAI™) system developed at the University of Bath at its site at Peace River in Alberta, Canada.

Unlike conventional light oil, heavy oil is very viscous, like syrup, or even solid in its natural state underground, making it very difficult to extract. But heavy oil reserves that could keep the planet's oil-dependent economy going for a hundred years lie beneath the surface in many countries, especially in Canada.

Although heavy oil extraction has steadily increased over the last ten years, the processes used are very energy intensive, especially of natural gas and water. But the THAI™ system is more efficient, and this, and the increasing cost of conventional light oil, could lead to the widespread exploitation of heavy oil.

"The world needs to switch to cleaner ways of using energy such as fuel cells," said Professor Malcolm Greaves, who developed the THAI™ process.

"But we are decades away from creating a full-blown hydrogen economy, and until then we need oil and gas to run our economies.

"Conventional light oil such as that in the North Sea or Saudi Arabia is running out and getting more expensive to extract.

"That's why the pressure is on to find an efficient way of extracting heavy oil."

THAI™ uses a system where air is injected into the oil deposit down a vertical well and is ignited. The heat generated in the reservoir reduces the viscosity of the heavy oil, allowing it to drain into a second, horizontal well from where it rises to the surface.

THAI™ is very efficient, recovering about 70 to 80 per cent of the oil, compared to only 10 to 40 per cent using other technologies.

Duvernay Petroleum's heavy oil field in Peace River contains 100 million barrels and this will be a first test of THAI™ on heavy oil, for which THAI™ was originally developed. Duvernay Petroleum has signed a contract with the Canadian firm Petrobank, which owns THAI™, to use the process.

The THAI™ process was first used by Petrobank at its Christina Lake site in the Athabasca Oil Sands, Canada, in June 2006 in a pilot operation which is currently producing 3,000 barrels of oil a day. This was on deposits of bitumen - similar to the surface coating of roads - rather than heavy oil.

Petrobank is applying for permission to expand this to 10,000 barrels a day though there is a potential for this to rise to 100,000.

The 50,000 acre site owned by Petrobank contains an estimated 2.6 billion barrels of bitumen. The Athabasca Oil Sands region is the single largest petroleum deposit on earth, bigger than that of Saudi Arabia.

Professor Greaves, of the University's Department of Chemical Engineering, said: "When the Canadian engineers at the Christina Lake site turned on the new system, in three separate sections, it worked amazingly well and oil is being produced at twice the amount that they thought could be extracted.

"It's been quite a struggle to get the invention from an idea to a prototype and into use, over the last 17 years. For most of the time people weren't very interested because heavy oil was so much more difficult and expensive to produce than conventional light oil.

"But with light oil now hitting around 100 dollars a barrel, it's economic to think of using heavy oil, especially since THAI™ can produce oil for less than 10 dollars a barrel.

"We've seen this project go from something that many people said would not work into something we can have confidence in, all in the space of the last 18 months."

Professor Greaves, who was previously Assistant Professor at the University of Saskatchewan in Canada, and who also worked with Shell and ICI in the UK, is looking at making THAI™ even more efficient using a catalyst add-on process called CAPRI™.

This process was also developed by Professor Greaves' team at Bath and is intended to turn heavy oil into light while still in the reservoir underground.
-end-
The CAPRI™ research has recently been awarded funding of £800,000 from Engineering and Physical Sciences Research Council, including £60,000 from Petrobank. The project collaborators are Dr Sean Rigby, from the Department of Chemical Engineering at Bath, and Dr Joe Wood of the University of Birmingham.

University of Bath

Related Oil Articles from Brightsurf:

The first battle for oil in Norway
The world's richest man and the world's largest oil company dominated the petroleum market in Norway long before landmark finds on the Norwegian continental shelf and the Norwegian oil fund.

Oil droplet predators chase oil droplet prey
Oil droplets can be made to act like predators, chasing down other droplets that flee like prey mimicking behavior seen among living organisms.

Healthy oil from wild olives
The oil from wild olive trees has excellent sensorial, physicochemical and stability characteristics from a nutritional point of view, according to an article published in the journal Antioxidants.

Oil-soluble transition metal-based catalysts tested for in-situ oil upgrading
The results of the study showed that the good catalytic properties of the new transition metal catalysts, as well as their low cost and easy accessibility, make them a potential solution in the aquathermolysis reaction and heavy oil recovery.

New method for removing oil from water
Oil poses a considerable danger to aquatic life. Researchers at the Universities of Bonn and Aachen and the Heimbach-GmbH have developed a new technology for the removal of such contaminations: Textiles with special surface properties passively skim off the oil and move it into a floating container.

A sustainable alternative to crude oil
A research team from the Fraunhofer Society and the Technical University of Munich (TUM) led by chemist Volker Sieber has developed a new polyamide family which can be produced from a byproduct of cellulose production -- a successful example for a more sustainable economy with bio-based materials.

When grown right, palm oil can be sustainable
Turning an abandoned pasture into a palm tree plantation can be carbon neutral, according to a new study by EPFL and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL).

Oil futures volatility and the economy
The drone strike on Saudi Arabia's oil infrastructure has highlighted the fragile and interconnected relationship between crude oil supply and the global economy, with new research bringing these economic ties into greater focus.

All-in-one: New microbe degrades oil to gas
The tiny organisms cling to oil droplets and perform a great feat: As a single organism, they may produce methane from oil by a process called alkane disproportionation.

Marine oil snow
Marine snow is the phenomena of flakes of falling organic material and biological debris cascading down a water column like snowflakes.

Read More: Oil News and Oil Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.