UNH scientists report first findings on key astrophysics problem

November 28, 2007

DURHAM, N.H. -- In a paper published recently in the journal Nature Physics, an international team of space scientists led by researchers from the University of New Hampshire present findings on the first experimental evidence that points in a new direction toward the solution of a longstanding, central problem of plasma astrophysics and space physics.

The mystery involves electron acceleration during magnetic explosions that occur, for example, in solar flares and "substorms" in the Earth's magnetosphere - the comet-shaped protective sheath that surrounds the planet and where brilliant auroras occur.

During solar flares, accelerated electrons take away up to 50 percent of the total released flare energy. How so many electrons are accelerated to such high energies during these explosive events in our local part of the universe has remained unexplained.

A mainstream theory holds that the mysterious, fast-moving electrons are primarily accelerated at the magnetic explosion site - called the reconnection layer - where the magnetic fields are annihilated and the magnetic energy is rapidly released. However, physicist Li-Jen Chen of the Space Science Center within the UNH Institute for the Study of Earth, Oceans, and Space discovered that the most powerful electron acceleration occurs in the regions between adjacent reconnection layers, in structures called magnetic islands.

When Chen analyzed 2001 data from the four-spacecraft Cluster satellite mission, which has been studying various aspects of Earth's magnetosphere, she found a series of reconnection layers and islands that were formed due to magnetic reconnection.

"Our research demonstrates for the first time that energetic electrons are found most abundantly at sites of compressed density within islands," reports Chen.

Another recent theory, published in the journal Nature, has suggested that "contracting magnetic islands" provide a mechanism for electron acceleration. While the theory appears relevant, it needs to be developed further and tested by computer simulations and experiments, according to the UNH authors.

Until the UNH discovery there had been no evidence showing any association between energetic electrons and magnetic islands. This lack of data is likely due to the fact that encounters of spacecraft with active magnetic explosion sites are rare and, if they do occur, there is insufficient time resolution of the data to resolve island structures.

In the Nature Physics paper, entitled "Observation of energetic electrons within magnetic islands," lead author Chen reports the first experimental evidence for the one-to-one correspondence between multiple magnetic islands and energetic electron bursts during reconnection in the Earth's magnetosphere.

"Our study is an important step towards solving the mystery of electron acceleration during magnetic reconnection and points out a clear path for future progress to be made," says Chen. UNH collaborators on the paper include Amitava Bhattacharjee, Pamela Puhl-Quinn, Hong-ang Yang, and Naoki Bessho.
-end-


University of New Hampshire

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.