Mix masters: NIST scientists image the molecular structure of polymer blends

November 28, 2012

Using an enhanced form of "chemical microscopy" developed at the National Institute of Standards and Technology (NIST), researchers there have shown that they can peer into the structure of blended polymers, resolving details of the molecular arrangement at sub-micrometer levels.* The capability has important implications for the design of industrially important polymers like the polyethylene blends used to repair aging waterlines.

Polyethylene is one of the most widely produced and used polymers in the world. It's used in many familiar applications--milk bottles, for instance--but the NIST research is motivated by a more critical application: water pipes. Aging water infrastructure is a significant national issue. The Environmental Protection Agency has reported that in the United States there are over 240,000 water main breaks per year, leaks wasting 1.7 trillion gallons of water per year, and costs to taxpayers of $2.6 billion per year.

Polyethylene pipes are one potential solution. They're relatively inexpensive to make and install, and they have negligible corrosion issues and a predicted service life of up to a century under ideal conditions. Unfortunately, current test standards do not address service life under field conditions, especially for fusion joints in the pipes. This uncertainty has slowed the use of large diameter polyethylene pipe.

The industry standard for polyethylene pipes is a blend of two different forms of the polymer, a medium-weight, high-density polyethylene (HDPE) and a high molecular weight "linear low-density polyethylene" (LLDPE). Combining the two, says NIST materials scientist Young Jong Lee, dramatically improves the toughness, strength and resistance to fracture of the polymer.

The problem for quantitative service-life prediction is understanding exactly why that is. Developing the necessary predictive models has been hindered by knowing just how the HDPE and LLDPE molecules blend together. They are so close chemically that X-ray or electron imaging--the usual go-to techniques for molecular structure--can't readily distinguish them.

The NIST team is using a variation of Raman spectroscopy, which can distinguish different chemical species--and measure how much of each--by analyzing the frequencies associated with the different vibrational modes of each molecule. The exact mix of these frequencies is an extremely discriminating "fingerprint" for any particular molecule without help of fluorescence labeling. Raman spectroscopy using focused laser beams has been used as a chemical microscope, able to detail the structure of complex objects by mapping the chemical composition at each point in a three-dimensional space.

The NIST instrument, called "BCARS" (broadband coherent anti-Stokes Raman scattering) microscopy, uses a pair of lasers to gather Raman data at least 10 times faster than other Raman imaging methods, a critical feature because of the vast amount of data that must be gathered to understand such highly structured blend systems.** The extra trick is to substitute deuterium ("heavy hydrogen") for hydrogen atoms in the HDPE component. The deuterium strongly shifts the Raman spectrum, making it easy to distinguish the two components. By controlling the polarization of the light, the technique provides additional details on the local crystal orientation of molecules in the polymer. The images show, for example, the formation of microscopic spherical regions of partial crystallization with the LLDPE more concentrated towards the center.

"This is a fast, three-dimensional chemical imaging technique that's particularly useful for studying microstructures of polymeric materials," says Lee.
-end-
The group currently is using BCARS to find the correlation between microscopic structures with characteristics of deformation and thermal fusion on polyethylene pipes. For more on Broadband CARS microscopy, see www.nist.gov/mml/bbd/biomaterials/bcars.cfm.

* Y.J. Lee, C.R. Snyder, A.M. Forster, M.T. Cicerone and W. Wu. Imaging the molecular structure of polyethylene blends with broadband coherent Raman microscopy. ACS Macro Lett. 2012, 1, 1347-1351.DOI: dx.doi.org/10.1021/mz300546e.

** See, for example, the Oct. 2010 story, "Faster CARS, Less Damage: NIST Chemical Microscopy Shows Potential for Cell Diagnostics" at www.nist.gov/public_affairs/tech-beat/tb20101013.cfm#cars.

National Institute of Standards and Technology (NIST)

Related Polymers Articles from Brightsurf:

Seeking the most effective polymers for personal protective equipment
Personal protective equipment, like face masks and gowns, is generally made of polymers.

Ultraheavy precision polymers
An environmentally friendly and sustainable synthesis of ''heavyweight'' polymers with very narrow molecular weight distributions is an important concept in modern polymer chemistry.

FSU researchers help develop sustainable polymers
Researchers at the FAMU-FSU College of Engineering have made new discoveries on the effects of temperature on sustainable polymers.

Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.

Growing polymers with different lengths
ETH researchers have developed a new method for producing polymers with different lengths.

Exciting new developments for polymers made from waste sulfur
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.

Polymers can fine-tune attractions between suspended nanocubes
In new research published in EPJ E, researchers demonstrate a high level of control over a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes.

Functional polymers to improve thermal stability of bioplastics
One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.

Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.

Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.

Read More: Polymers News and Polymers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.